
1

Structural Robustness to Noise in Consensus Networks: Impact of
Degrees and Distances, Fundamental Limits, and Extremal Graphs
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Abstract—We investigate how the graph topology influences the
robustness to noise in undirected linear consensus networks. We
measure the structural robustness by using the smallest possible
value of steady state population variance of states under the noisy
consensus dynamics with edge weights from the unit interval. We
derive tight upper and lower bounds on the structural robustness
of networks based on the average distance between nodes and the
average node degree. Using the proposed bounds, we characterize
the networks with different types of robustness scaling under
increasing size. Furthermore, we present a fundamental trade-
off between the structural robustness and the average degree
of networks. While this trade-off implies that a desired level of
structural robustness can only be achieved by graphs with a
sufficiently large average degree, we also show that there exist
dense graphs with poor structural robustness. We then show that,
random k-regular graphs (the degree of each node is k) with n
nodes typically have near-optimal structural robustness among all
the graphs with size n and average degree k for sufficiently large
n and k. We also show that when k increases properly with n,
random k-regular graphs maintain a structural robustness within
a constant factor of the complete graph’s while also having the
minimum average degree required for such robustness.

Index Terms—Networked control systems, decentralized con-
trol, network theory, robustness.

I. INTRODUCTION

Consensus networks, where the state of each node ap-
proaches a weighted average of the states of adjacent nodes,
are used to model the diffusive couplings numerous natural
and engineered systems. These systems typically operate in
the face of various disturbances such as measurement/process
noise, communication delays, component failures, misbehav-
ing nodes, or malicious attacks (e.g., [2], [3], [4], [5], [6]).
Accordingly, a central question regarding such networks is
how they behave in the face of disturbances.

This paper is focused on the robustness of undirected
consensus networks to noisy interactions. In such networks,
each edge is endowed with some positive weight denoting
the coupling strength between the corresponding nodes. We
consider a setting with additive process noise, where the state
of each node is attracted towards the weighted average of the
states of its neighbors plus some independent and identically
distributed (i.i.d.) white Gaussian noise with zero mean and
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unit covariance. We use the expected steady state population
variance of states, which is a variant of the H2-norm of the
system with the output defined as the deviation of nodes
from global average, as the measure of vulnerability to noise.
Similar dynamics were considered in [2], [3] and it was shown
that for any network with a given allocation of edge weights,
the expected steady state variance can be expressed in terms
of the weighted Laplacian eigenvalues. Some tight bounds on
this robustness measure were presented in [7], [8].

In this paper, we introduce the notion of structural ro-
bustness to noise, which extends the related measures in the
literature (e.g., [2], [3]) and assess each network based on
the smallest value of expected steady state variance that can
be attained under the noisy consensus dynamics with edge
weights from the unit interval. We show that two simple graph
measures, namely the average distance between nodes and
the average node degree, define tight bounds on the proposed
measure of structural robustness. We then use these bounds
to obtain some fundamental limits and trade-offs regarding
structural robustness and to characterize graphs with extremal
robustness. The main contributions of this paper are as follows:

• We show that the average distance between nodes and the
average node degree define tight upper and lower bounds
on the proposed measure of structural robustness to noise.
Using these bounds, we also provide a characterization of
networks with extremal scaling of structural robustness,
i.e., graph families such that the structural robustness gets
arbitrarily worse (e.g., path graph) or arbitrarily better
(e.g., complete graph) as the network size increases.

• We show that there is a fundamental trade-off between the
structural robustness and the edge-sparsity of networks.
We express this trade-off in terms of tight bounds on the
ratio of structural robustness of any given graph to the
structural robustness of the complete graph (best) and
the star graph (best among the connected graphs with
minimum average degree). While these bounds imply
that a desired level of structural robustness can only
be achieved by graphs with a sufficiently large average
degree, we also show that there exist graphs whose
robustness becomes arbitrarily worse with increasing size
despite having an arbitrarily large average degree.

• We show that, for sufficiently large n and k, random k-
regular graphs with n nodes typically have near-optimal
structural robustness among the graphs with size n and
average degree k. Moreover, when k increases properly
with size, random k-regular graphs maintain a struc-
tural robustness within a constant factor of the complete
graph’s while also having the minimum average degree
required for such robustness.
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The organization of this paper is as follows: Section II pro-
vides some graph theory preliminaries. Section III presents our
main results. Section IV provides the numerical simulations.
Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Notation
We use R and R+ to denote the set of real numbers and

positive real numbers, respectively. For any finite set A with
cardinality |A|, we use R|A| (or R|A|+ ) to denote the space
of real-valued (or positive-real-valued) |A| − dimensional vec-
tors. For any pair of vectors x, y ∈ R|A|, we use x ≤ y (or
x < y) to denote the element-wise inequalities, i.e., xi ≤ yi
(or xi < yi) for all i = 1, 2, . . . , |A|. The all-ones and all-
zeros vectors, their sizes being clear from the context, will be
denoted by 1 ∈ Rn and 0 ∈ Rn. We use O(·) to denote the
Big O notation.

B. Graph Theory Basics
A graph G = (V,E) consists of a node set

V = {1, 2, . . . , n} and an edge set E ⊆ V × V . For an
undirected graph, each edge is represented as an unordered
pair of nodes. For each i ∈ V , let Ni denote the neighborhood
of i, i.e., Ni = {j ∈ V | (i, j) ∈ E}. A path between a pair of
nodes i, j ∈ V is a sequence of distinct nodes {i, . . . , j} such
that each pair of consecutive nodes are linked by an edge. For
any node i, the number of nodes in its neighborhood, |Ni|, is
called its degree, di. Accordingly, the average node degree is

d̃(G) =
1

n

n∑
i=1

di =
2|E|
n

. (1)

The distance between any two nodes i and j, which is
denoted by δij , is equal to the number of edges on the shortest
path between those nodes. The maximum distance between
any two nodes, maxi,j∈V δij is known as the diameter of the
graph, and the average distance between the nodes is given as

δ̃(G) =
2

n2 − n
∑

1≤i<j≤n

δij .

A graph is connected if there exists a path between every pair
of nodes. A connected undirected graph with n nodes is called
a tree if there is exactly one path between each pair of nodes.
Any connected graph with n nodes and n− 1 edges is a tree.
A graph is called a k-regular graph if the number of edges
incident to each node (the degree) is equal to k. A random
k-regular graph, Gn,k, is a graph that is selected uniformly at
random from the set of all k-regular graphs with n nodes.

For weighted graphs, we use w ∈ R|E|+ to denote the vector
of edge weights and wij ∈ R+ to denote the weight of the edge
(i, j) ∈ E. The (weighted) graph Laplacian of a weighted
graph is defined as

[Lw]ij =


∑
k∈Ni

wik if i = j
−wij if j ∈ Ni
0 otherwise

In the remainder of the paper, we will use L to denote the
unweighted Laplacian, i.e., the special case when w = 1.

C. Consensus Networks

Consensus networks can be represented as a graph, where
the nodes correspond to the agents, and the weighted edges
exist between the agents that are coupled through local inter-
actions. For such a network G = (V,E), let the dynamics of
each agent i ∈ V be

ẋi(t) =
∑
j∈Ni

wij(xj(t)− xi(t)) + ξi(t),

where xi(t) ∈ R denotes the state of i, each wij ∈ R+ is
a constant weight representing the strength of the coupling
between i and j, and ξ(t) ∈ Rn is i.i.d. white Gaussian
noise with zero mean and unit covariance, which is one of
the standard noise models for agents that are independently
affected by disturbances of same intensity due to various
effects such as communication errors, noisy measurements, or
quantization errors (e.g.,[2], [3], [7]). Accordingly, the overall
dynamics of the agents can be expressed as

ẋ(t) = −Lwx(t) + ξ(t), (2)

where Lw denotes the weighted Laplacian. In a noise-free
setting (ξ(t) = 0 for all t ≥ 0), the dynamics in (2) are known
to result in a global consensus, limt→∞ x(t) ∈ span{1}, for
any x(0) ∈ Rn if and only if the graph is connected [9], [10].
In the noisy case, a perfect consensus can not be achieved.
Instead, some finite steady state variance of x(t) is observed
on connected graphs [2], [3]. Accordingly, the robustness of
the network can be quantified through the expected population
variance in steady state, i.e.,

H(G, w) := lim
t→∞

1

n

n∑
i=1

E[(xi(t)− x̃(t))2],

where x̃(t) ∈ R denotes the average of x1(t), x2(t), . . . , xn(t).
It can be shown that (e.g., see [2], [3]) H(G, w) is equal

to 1/n times the square of the H2-norm of the system in
(2) from the input ξ(t) to the output y(t) ∈ Rn defined as
yi(t) = xi(t)− x̃(t), and it satisfies

H(G, w) =
1

2n

n∑
i=2

1

λi(Lw)
, (3)

where and 0 < λ2(Lw) ≤ . . . ≤ λn(Lw) denote the
eigenvalues of the weighted Laplacian Lw.

In this paper, we investigate how much the structure of the
underlying graph (the edge set E) causes vulnerability to noise
in consensus networks. We measure the structural vulnerability
of any given network to noise based on the smallest possible
value of H(G, w), given that the edge weights should belong
to the feasible set W = {w | 0 < w ≤ 1}. Since multiplying
all the weights by some α ∈ R+ results in Lαw = αLw and
H(G, αw) = H(G, w)/α due to (3), it is possible to make
H(G, w) arbitrarily small for any network by just scaling up all
the weights. By considering only weights in (0, 1], we remove
this possibility and focus on the impact of network structure.

Definition (Structural Vulnerability and Robustness) The
structural vulnerability of an undirected consensus network
G = (V,E) to noise is the smallest possible value of H(G, w)
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that is achievable under weights from the unit interval, i.e.,

H∗(G) := min
0<w≤1

H(G, w). (4)

The structural robustness to noise is quantified using the
reciprocal of structural vulnerability, 1/H∗(G).

Remark 1 For brevity, we will say “structural robustness
(or vulnerability)” without explicitly saying “to noise”. The
term “structural robustness” is also used in the literature for
referring to the robustness of connectivity to node/edge failures
(e.g., [11], [12]). While the two notions of robustness have
connections, the distinction should be clear from the context.

III. MAIN RESULTS

In this section, we provide the main results of this paper.
We start our derivations by providing H∗(G) as a function of
the (unweighted) Laplacian eigenvalues.

Lemma 3.1. For any connected undirected graph G,

H∗(G) =
1

2n

n∑
i=2

1

λi(L)
, (5)

where L denotes the unweighted Laplacian of G.

Proof. For any connected undirected G, any weighted Lapla-
cian is a positive semidefinite matrix [13]. Increasing any of its
weights or adding new edges leads to a new Laplacian that is
equal to the initial Laplacian plus another matrix that is also a
weighted Laplacian (a graph with just the added/strengthened
edges). All the Laplacian eigenvalues monotonically (not nec-
essarily strictly) increase under such an addition of a positive
semidefinite matrix due to the Weyl’s inequality (e.g., see
[14]). Hence, H(G, w) is minimized for w = 1 within the
feasible set of (4). Accordingly, using (3), we obtain (5).

In light of Lemma 3.1, H∗(G) of any connected network
can be computed through the eigenvalues of the unweighted
Laplacian. Furthermore, using this result, H∗(G) can also be
expressed in terms of a graph measure known as the Kirchhoff
index (total effective resistance) [15]. For any connected
undirected graph with n nodes, G, the Kirchhoff index satisfies

Kf (G) = n

n∑
i=2

1

λi(L)
,

where L is the Laplacian of G. Accordingly, due to (5),

H∗(G) =
Kf (G)

2n2
. (6)

The connection in (6) is particularly useful as it links the
structural robustness to the rich literature in graph theory
on Kirchhoff index. For instance, closed form expressions in
terms of size are known for some graph families (e.g., see
[16], [17], [18]). Using those results on Kirchhoff index we
immediately obtain that the path (Pn), cycle (Cn), star (Sn),
and complete (Kn) graphs of size n have

H∗(Pn) =
n2 − 1

12n
, H∗(Cn) =

n2 − 1

24n
, (7)

H∗(Sn) =
(n− 1)2

2n2
, H∗(Kn) =

(n− 1)

2n2
.

Furthermore, among all the connected undirected graphs
with n nodes, the Kirchoff index is minimized in the complete
graph Kn and maximized in the path graph Pn (e.g., see [18]).
As such, in light of (6), Kn and Pn are also the minimizer
and maximizer of H∗(G), respectively.

A. Impact of Average Degree and Average Distance
The structural vulnerability of any given network can be

computed by using the Laplacian eigenvalues as in (5). How-
ever, it is not easy to use (5) or (6) for certain analysis and
design applications in a systematic and efficient way. For in-
stance, finding an optimal way to add a given number of edges
to an arbitrary network to reduce the H∗(G) would require
searching among all possibilities (e.g., see [18]). Furthermore,
while it is possible to see how H∗(G) scales with size for
the special graph families with closed form expressions as in
(7), it is hard to analyze the asymptotic robustness of generic
networks. One way to overcome these type of difficulties is
focusing on some bounds onH∗(G) rather than its exact value.

Many bounds on the Kirchhoff index have been proposed
in the literature by using graph measures such as chromatic
number, independence number, edge/node connectivity, diam-
eter, or degree sequence (e.g., see [19], [20]). These bounds
typically require significant amount of global information
and/or computation, which limits their applicability in large
networks. Motivated by such limitations, we present a fun-
damental relationship between the H∗(G) and two aggregate
measures, namely the average node degree and the average
distance between nodes, which can be computed/estimated
efficiently based on limited information (e.g. [21]).

Theorem 3.2. For any connected undirected graph
G = (V,E) with n ≥ 2 nodes,

(n− 1)2

2d̃(G)n2
≤ H∗(G) ≤ δ̃(G)(n− 1)

4n
, (8)

where d̃(G) is the average node degree, δ̃(G) is the average
distance between the nodes. Moreover, the lower bound holds
with equality if and only if G is a complete graph, and the
upper bound holds with equality if and only if G is a tree.

Proof. (Lower bound:) Since the harmonic mean is always
less than or equal to the arithmetic mean, we have

n− 1∑n
i=2 λi(L)

≤ 1

n− 1

n∑
i=2

1

λi(L)
, (9)

where the left side is the harmonic mean and the right side
is the arithmetic mean of 1/λ2(L), 1/λ3(L), . . . , 1/λn(L).
Furthermore since L is a symmetric matrix, the sum of its
eigenvalues equals its trace, which is equal to the sum of node
degrees nd̃(G). Hence, (9) implies

(n− 1)2

nd̃(G)
≤

n∑
i=2

1

λi(L)
. (10)

Due to (3) and (10),

H∗(G) =
1

2n

n∑
i=2

1

λi(L)
≥ (n− 1)2

2d̃(G)n2
. (11)
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Alternatively, (11) can also be obtained by using [7, Theo-
rem 6] and Lemma 3.1, which implies that the performance
measure in [7, Theorem 6] equals nH∗(G).

Note that the harmonic mean equals the arithmetic mean if
and only if all the numbers are equal. Hence, (9) holds with
equality if and only if λ2(L) = λ3(L) = . . . = λn(L). Fur-
thermore, all the positive Laplacian eigenvalues of a connected
graph are equal if and only if the graph is a complete graph
(e.g., see [13]). Hence, (11) holds with equality if and only if
G is a complete graph.

(Upper bound:) The Kirchoff index is defined as the sum of
pairwise effective resistances between nodes [15], [18], i.e.,

Kf (G) =
∑

1≤i<j≤n

rij ,

where rij is equal to the effective resistance between the nodes
i and j on an electrical network that is obtained by assigning
a unit resistor to each edge of G. For any two nodes i and
j, rij = δij if there is a unique path between i and j, and
rij < δij otherwise (e.g., see [18, Theorem 2.4]). Accordingly,
the Kirchoff index satisfies

Kf (G) ≤
∑

1≤i<j≤n

δij , (12)

and (12) holds with equality if and only if there is a unique
path between any two nodes, i.e. G is a tree. Since the sum
of distances between the nodes satisfy∑

1≤i<j≤n

δij =
n(n− 1)δ̃(G)

2
,

(6) and (12) together imply

H∗(G) ≤ δ̃(G)(n− 1)

4n
. (13)

Furthermore, since (12) holds with equality if and only if G is
a tree, the same is true for the inequality in (13). Alternatively,
the upper bound can also be proved by using [22, Theorem 2]
and Lemma 3.1.

Theorem 3.2 is closely related to [7, Thms. 6 and 8], which
can be combined with Lemma 3.1 to obtain two other bounds
on H∗(G): a lower bound based on the degree sequence
(all the node degrees) and an upper bound based on the
diameter. While using the degree sequence may yield a better
lower bound (closer to actual value), the average degree can
be computed with significantly less information, namely the
number of nodes and the number of edges as in (1). The
upper bound in Theorem 3.2 can be computed by using only
the pairwise distances between nodes, whereas computing the
upper bound in [7, Thm. 6] also requires the number of
edges. These two upper bounds may outperform each other
on different graphs. For example, while [7, Thm. 6] yields a
better upper bound for the complete graph, Theorem 3.2 gives
a better upper bound for the path graph.

B. Graphs with Extremal Robustness Scaling

One of the important considerations when designing large
scale networks is how the robustness of the system would

scale with its size. As indicated by (7), different network
topologies may exhibit different robustness scaling properties.
For instance, while the structural vulnerability of complete
graph, H∗(Kn), tends to zero as the network size increases
(see (7)), the structural vulnerability of path graph, H∗(Pn),
tends to infinity as the network size increases (see (7)). Apart
from these two extremal cases of robustness scaling, there
are also networks (e.g., star graph) such that H∗(Gn) con-
verges to some non-zero value as the network size increases.
One question of interest is then which topological properties
determine how the structural robustness behaves as the size
goes to infinity. Our next result provides a graph topological
characterization of networks with extremal robustness scaling.

Corollary 3.3. Let {Gn}n∈N denote an infinite sequence of
connected undirected graphs with n nodes. The structural
vulnerability of Gn tends to zero as n goes to infinity only
if the average node degree grows unbounded, i.e.,

lim
n→∞

H∗(Gn) = 0⇒ lim
n→∞

d̃(Gn) =∞.

Furthermore, the structural vulnerability grows unbounded
only if the average distance also grows unbounded, i.e.,

lim
n→∞

H∗(Gn) =∞⇒ lim
n→∞

δ̃(Gn) =∞.

Proof. (H∗(Gn)→ 0): Note that the lower bound in (8) is non-
negative for any connected undirected G with n ≥ 2 nodes.
Hence, due to the squeeze theorem, if H∗(Gn) tends to zero
then the lower bound must also tend to zero, i.e.,

lim
n→∞

H∗(Gn) = 0⇒ lim
n→∞

(n− 1)2

2d̃(Gn)n2
= 0. (14)

Since the average node degree d̃(Gn) is positive, (14) implies

lim
n→∞

d̃(Gn) =∞.

(H∗(Gn) → ∞): If H∗(Gn) diverges as n goes to infinity,
the upper bound in (8) must also diverge, which is only possi-
ble if the average distance between nodes, δ̃(Gn), diverges.

C. Structural Robustness vs. Sparsity

We first highlight a fundamental trade-off between structural
robustness and sparsity. We use the average node degree as
the measure of sparsity (lower average degree implies higher
sparsity). We express this trade-off in terms of tight bounds,
i.e., bounds that are satisfied with equality for some connected
Gn, on the ratio of structural robustness of any given graph
to the structural robustness of the complete graph, which has
the best robustness among all connected graphs, and the star
graph, which has the best structural robustness achievable with
the minimum number of edges a connected graph can have.

Theorem 3.4. For any connected undirected graph Gn,

H∗(Sn)

H∗(Gn)
≤ d̃(Gn), (15)

H∗(Gn)

H∗(Kn)
≥ n− 1

d̃(Gn)
, (16)
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where Sn and Kn denote the star and complete graphs with
n nodes. Furthermore, these inequalities are tight in the sense
that they hold with equality for some Gn.

Proof. Both (15) and (16) follow from (7) and the lower bound
in (8). The tightness of the bounds can be proved by showing
that they are satisfied with equality for some Gn. For instance,
the bounds are satisfied with equality for the complete graph,
Gn = Kn, due to (7) and the fact that d̃(Kn) = n− 1.

Since Sn has the best structural robustness achievable with
the minimum number of edges a connected graph can have,
(15) highlights the price of structural robustness in terms
of sparsity. Any graph with significantly better structural
robustness than the star graph of same size should have a
proportionally high average degree. Similarly, (16) indicates
how sparse a graph can be while having a certain level of
structural robustness relative to the complete graph.

Theorem 3.4 can be used for the design of sparse yet robust
networks. For example, consider a network design problem,
where the goal is to build a network with the minimum
number of edges that has a bounded robustness-suboptimality
with respect to the complete graph, i.e., H∗(Gn)/H∗(Kn) ≤ α
for some desired α ≥ 1. For instance, in a wireless sensor
network, this design problem can be motivated by the goal of
achieving robust distributed estimation with minimum com-
munication due to energy and bandwidth considerations. In
light of (16), such a network must have an average degree of
at least (n− 1)/α, i.e.,

H∗(Gn)

H∗(Kn)
≤ α⇒ d̃(Gn) ≥ n− 1

α
. (17)

Accordingly, the design space can be narrowed down to the
set of graphs with sufficiently many edges as per (17). Note
that (17) defines a necessary condition on sparsity and not
every graph with that many edges have the desired robustness
property. In fact, our next result shows that there even exist
graphs whose structural vulnerability grows unbounded despite
having such an average degree. This result also complements
Corollary 3.3 by showing that an unbounded growth in d̃(Gn)
with increasing size is only a necessary condition and not a
sufficient condition for H∗(Gn) to approach zero.

Theorem 3.5. For any constant α > 1, there exist infinite
sequences of connected undirected graphs with n nodes,
{Gn}n∈N, such that

lim
n→∞

d̃(Gn)

n− 1
≥ 1

α
, lim
n→∞

H∗(Gn) =∞. (18)

Proof. We prove this result by designing such a sequence
of graphs. Consider the following bridging operation,

⊕
,

which connects two disjoint graphs, Γ = (U,F ) with the
node set U = {u1, . . . , up} and Γ′ = (U ′, F ′) with the
node set U ′ = {u′1, . . . , u′q}, with a single edge such that
G = (V,E) = Γ

⊕
Γ′ is defined as

V = U ∪ U ′, E = F ∪ F ′ ∪ {(ui, u′j)},

for some ui ∈ U and u′j ∈ U ′. It was shown in [23] that the
Kirchhoff index of of such a bridged graph can be expressed

in terms of the Kirchhoff indices of the two components as

Kf (G) =
p+ q

p
Kf (Γ) +

p+ q

q
Kf (Γ′) +

2p2 − 3p+ 1

6p
+
q − 1

q2
+ 1.

(19)

Furthermore, using (1) it can be shown that

d̃(G) =
pd̃(Γ) + qd̃(Γ′) + 2

p+ q
. (20)

Now, consider any sequence of graphs Gn = Γp
⊕

Γ′q
such that p + q = n, Kf (Γ′q) = O(q3), p = dn/βe, and
d̃(Γp) ≥ (p− 1)/β for some constant β > 1 such that β3 ≤ α.
For instance, Γp can be any graph with p nodes and at least
p(p − 1)/2β edges, and Γ′q can be a path or a cycle with q
nodes, which results in Kf (Γ′q) = O(q3) as per (7) and (6).
For example, if Γp is a complete graph and Γ′q is a path, the
resulting graph Γp

⊕
Γ′q is known as a lollipop graph. For

p = dn/βe, we have p ≈ n/β and q ≈ n − n/β, which
implies Kf (Γ′q) = O(q3) = O(n3) since β > 1 is a constant.
Accordingly, using (6) and (19), one can show that such a
sequence of graphs {Gn}n∈N satisfies

lim
n→∞

H∗(Gn) =∞. (21)

Furthermore, (20) and the fact that p = dn/βe, p+q = n, and
d̃(Γp) ≥ (p− 1)/β for some β > 1 such that β3 ≤ α imply

lim
n→∞

d̃(Gn)

n− 1
≥ lim
n→∞

n/β(n/β − 1)

β(n2 − n)
=

1

β3
≥ 1

α
. (22)

Due to (21) and (22), any such {Gn}n∈N satisfies (18).

D. Structural Robustness of Random Regular Graphs

In this subsection, we show that random k-regular graphs
are approximate solutions to the combinatorial problem of
designing sparse networks with optimal structural robustness.
Our particular focus on random k-regular graphs is motivated
by their several desirable properties. For example, such graphs
yield uniform/bounded node degrees, which is useful in many
applications that demand a balanced communication load
among the nodes (e.g., [24], [25]). It is also known that random
k-regular graphs (k ≥ 3) are expander graphs, i.e., sparse yet
well-connected structures that can not be easily disconnected
by a targeted removal of nodes/edges (e.g., [26]). Moreover,
the algebraic connectivity of such graphs is bounded away
from zero (e.g., [27]), which not only implies fast convergence
in consensus networks [28] but also can be used for providing
guarantees on their structural robustness. More specifically, as
n goes to infinity, for k ≥ 3 almost every k-regular graph
has λ2(L) ≥ k − 2

√
k − 1− ε for any ε > 0 (e.g., see [27]).

In light of (5), this property implies an upper bound on the
structural vulnerability of those graphs since for any graph

1

2n

n∑
i=2

1

λi(L)
≤ n− 1

2nλ2(L)
.

Accordingly, for any integer k ≥ 3 and ε ∈ (0, k − 2
√
k − 1)

lim
n→∞

Pr

{
H∗(Gn,k) ≤ n− 1

2n(k − 2
√
k − 1− ε)

}
= 1, (23)



6

where Gn,k is a random k-regular graph. Since n and k cannot
be both odd (the number of edges is equal to nk/2), for odd
values of k the limit in (23) is defined along the sequence
of even integers n ∈ {k + 1, k + 3, . . .}. Furthermore, the
probability in (23) tends to one rather fast with increasing n
even for moderate values of k. Using [27, Theorem 1.1], it
can be shown that for any even integer k ≥ 4

Pr

{
H∗(Gn,k) ≤ n− 1

2n(k − 2
√
k − 1− ε)

}
≥ 1− c

nτ
,

for some constant c > 0 and

τ =

⌈√
k − 1 + 1

2

⌉
− 1.

As such, the bound in (23) is satisfied by a random k-regular
graph of size n with probability at least 1−O(1/n) for k = 4,
with probability at least 1−O(1/n2) for k = 12, and so on.

By combining (23) with the lower bound in (8) for
d̃(G) = k, we can show that for large values of n, with
high probability, the structural vulnerability of random k-
regular graphs (k ≥ 3) is within a constant factor of the
smallest possible value among the graphs with the same size
and average degree. Furthermore, this factor gets arbitrarily
close to one as k increases. In other words, for large values
of k, random k-regular graphs have a structural robustness
arbitrarily close to the best possible value (with that many
edges) with high probability as the network size increases.

Theorem 3.6. For any integer k ≥ 3 and ε ∈ (0, k−2
√
k − 1)

lim
n→∞

Pr

 H∗(Gn,k)

min
Gn:d̃(Gn)=k

H∗(Gn)
≤ k

k − 2
√
k − 1− ε

+ ε

 = 1,

(24)

where Gn,k is a random k-regular graph.

Proof. Using the lower bound in (8) and (7), for any undi-
rected graph Gn with n nodes and average degree d̃(Gn) = k,

min
Gn:d̃(Gn)=k

H∗(Gn) ≥ (n− 1)2

2kn2
(25)

Using (25) with (23), for any random k-regular graph with
k ≥ 3 and ε ∈ (0, k − 2

√
k − 1),

lim
n→∞

Pr

 H∗(Gn,k)

min
Gn:d̃(Gn)=k

H∗(Gn)
≤ 2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

 = 1.

(26)

Note that the upper bound in (26) satisfies

lim
n→∞

2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

=
k

k − 2
√
k − 1− ε

.

Due to the definition of limit, for any ε′ > 0 there exists
some n′ ∈ N such that∣∣∣∣ 2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

− k

k − 2
√
k − 1− ε

∣∣∣∣ < ε′,∀n > n′.

(27)
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0
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Fig. 1. Approximation bound in (24), which bounds the ratio of the structural
vulnerability of random k-regular graphs to the smallest possible value among
the graphs with same size and average degree k, is shown as a function of k.

Note that for any k ≥ 3, ε ∈ (0, k − 2
√
k − 1), and n ≥ 2,

2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

≥ k

k − 2
√
k − 1− ε

. (28)

Using (27) and (28), we get

2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

<
k

k − 2
√
k − 1− ε

+ ε′,∀n > n′.

(29)

Without loss of generality, we can pick ε′ = ε and (29) would
hold for the corresponding n′ ∈ N. Accordingly, we can obtain
(24) from (26) and (29).

In light of Theorem 3.6, random k-regular graphs with
sufficiently large degree k and size n typically have bounded
suboptimality in their structural robustness when compared
to the best graph of size n and average degree k. Fig. 1
illustrates how the approximation bound in (24) changes as
a function of k. As shown in this figure, the approximation
bound starts around 17.5 for k = 3, rapidly drops to 5 by
k = 5 and to 2 by k = 15, and then keeps approaching
one as k increases. Accordingly, random k-regular graphs
with n nodes are typically very good approximate solutions
to the problem of optimizing structural robustness subject to
a sparsity constraint d̃(Gn) = k for sufficiently large values of
n and k . We complement Theorem 3.6 by showing that the
structural vulnerability of random k-regular graphs is typically
within a bounded proximity of the complete graph’s structural
vulnerability for sufficiently large k and n.

Theorem 3.7. For any constant α ≥ 1 and any ε > 0,

lim
n→∞

Pr

{
H∗(Gn,k)

H∗(Kn)
≤ α+ ε

}
= 1, ∀k ≥ n− 1

α
, (30)

where Kn is the complete graph and Gn,k is a random k-
regular graph.

Proof. Note that the denominator of the upper bound in (23)
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is strictly increasing in k since

d(k − 2
√
k − 1− ε)
dk

= 1− 1√
k − 1

> 0, ∀k ≥ 3.

Accordingly, for k ≥ (n− 1)/α, we can plug the smallest
possible value of k into the upper bound in (23) and obtain

lim
n→∞

Pr

H
∗(Gn,k) ≤ n− 1

2n

(
n− 1

α
− 2

√
n− 1− α

α
− ε

)
 = 1,

(31)

for any ε ∈ (0, k − 2
√
k − 1). Using (31) together with (7),

and without loss of generality setting ε = 0.1, which is in
(0, k − 2

√
k − 1) for all k ≥ 3, we have

lim
n→∞

Pr


H∗(Gn,k)

H∗(Kn)
≤ n

n− 1

α
− 2

√
n− 1− α

α
− 0.1

 = 1.

(32)

Note that the upper bound in (32) approaches α as n → ∞.
Hence, for any ε > 0 there is a sufficiently large value of n
such that, the upper bound is smaller than α+ ε. Accordingly,
we obtain (30).

Theorem 3.7 implies that the random regular graphs can
approach the fundamental limit in (17) on H∗(Gn)/H∗(Kn)
imposed by the sparsity of Gn. For example, for any constant
α ≥ 1 and even number of nodes n such that n ≥ 3α+ 1, let
Gn,k∗ be a random k∗-regular graph, where

k∗ =

⌈
n− 1

α

⌉
. (33)

For such random regular graphs, as n increases,
H∗(Gn,k∗)/H∗(Kn) is upper bounded by α with a very
high probability due to (30). Furthermore, Gn,k∗ has an
average degree of k∗ that is equal or very close to the
minimum required value of (n− 1)/α as given in (17).

IV. SIMULATION RESULTS

We simulate the noisy consensus dynamics in (2), where
ξ(t) ∈ Rn is white Gaussian noise with zero mean and unit
covariance, on different networks with uniform edge weights
w = 1 to demonstrate their structural robustness. In each
simulation, the network is initialized at x(0) = 0.

In the first set of simulations, we consider the path, star,
random 3-regular, and complete graphs. We generate the ran-
dom regular graphs using the distributed algorithm in [29]. We
aim to numerically illustrate how the structural robustness of
these graphs compare to each other and change with increasing
network size. For each type we generate three networks of
different sizes: n = 20, n = 40, and n = 60. The resulting
state variances over time on the networks with n = 60 are
shown in Fig. 2. In Table I, for each of these networks
we provide the average of state variance over the simulation

0 1000 2000 3000 4000 5000
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0.03

0 1000 2000 3000 4000 5000

0

0.4

0.8

1.2

0 1000 2000 3000 4000 5000

0

0.4

0.8

1.2

0 1000 2000 3000 4000 5000

0

10

20

30

Fig. 2. Variance of states under the noisy consensus dynamics on path (P60),
star (S60), random 3-regular (G60,3), and complete (K60) graphs with 60
nodes. The edge weights are all set to one to illustrate structural robustness.

n = 20 n = 40 n = 60

Path 1.662 3.32 5.21
1.663 3.33 4.99

Star 0.45 0.478 0.485
0.45 0.475 0.483

Random
3-regular

0.239 0.286 0.305
0.237 0.287 0.305

Complete 0.024 0.0124 0.0085
0.024 0.0122 0.0082

TABLE I
AVERAGE OF STATE VARIANCES OVER TIME AND THE VALUE OF

STRUCTURAL VULNERABILITY AS PER (5) (BOLD) FOR THE PATH, STAR,
RANDOM 3-REGULAR, AND COMPLETE GRAPHS OF SIZES 20,40, AND 60.

horizon and the theoretical value of structural vulnerability,
which is computed using the Laplacian eigenvalues as per (5).
For the path, star, and complete graphs, the empirical values
can also be verified using (7). For the random 3-regular graphs,
the average distances are computed as 2.62 (n = 20), 3.62
(n = 40), and 4.09 (n = 60). Using the average distances
together with the average degrees, the lower and upper bounds
in (8) are computed as 0.15 and 0.62 (G20,3), 0.158 and
0.882 (G40,3), 0.161 and 1.005 (G60,3). For each random 3-
regular graph, the observed average state variance is inside
the corresponding interval, closer to the lower bound.

In the second set of simulations, we aim to illustrate how the
structural robustness of random k-regular graphs with k as in
(33) change with increasing network size for a given α ≥ 1. As
such, we investigate the performance of such graphs as an ap-
proximate solution to the combinatorial problem of designing a
network with minimum sparsity that hasH∗(Gn) ≤ αH∗(Kn).
For this simulation we pick α = 25 and set k as per (33)
for four different sizes: n = 100, n = 150, n = 200,
and n = 250. Accordingly, we simulate the noisy consensus
dynamics on the random regular graphs G100,4, G150,6, G200,8,
and G250,10. The average of state variances over the simulation
horizon were observed as 0.1818 (G100,4), 0.1015 (G150,6),



8

n = 100 n = 150 n = 200 n = 250
k = 4 k = 6 k = 8 k = 10

Random
k-regular 0.1813 0.1013 0.0716 0.0555

Complete 0.005 0.0033 0.0025 0.002

Ratio 36.3 30.7 28.6 27.8

TABLE II
STRUCTURAL VULNERABILITY OF THE RANDOM k-REGULAR GRAPHS

AND THE COMPLETE GRAPHS OF SIZE n AS PER (5) AND THEIR RATIOS.

0.0717 (G200,8), and 0.0556 (G250,10). In Table II, we provide
the theoretical values of H∗(Gn,k) and H∗(Kn), which are
computed using the Laplacian eigenvalues of graphs as per
(5). We also provide their ratios, H∗(Gn,k)/H∗(Kn), in the
last row of this table. The ratio starts at 36.3 for n = 100
and monotonically drops to 27.8 by n = 250. These results
indicate that H∗(Gn,k)/H∗(Kn) is approaching α in accor-
dance with Theorem 3.7. Hence, such random k-regular graphs
with k as per (33) approximately maintain the required level
of robustness with the minimum average degree possible as
shown in (17).

V. CONCLUSION

We investigated the structural robustness of undirected lin-
ear consensus networks to noisy interactions. We measured
the structural robustness of a graph based on the smallest
possible value of the expected steady state population variance
of states under the noisy consensus dynamics with admissible
edge weights in (0, 1]. We showed that the average distance
and the average node degree in the underlying graph define
tight bounds on the structural robustness. Using these novel
bounds, we also presented some fundamental graph topolog-
ical limitations on structural robustness and we investigated
the graphs with extremal robustness properties.

As a future direction, we intend to extend our robustness
analysis to the generalized case of directed graphs, where
the interactions between nodes are not necessarily symmet-
ric. We also plan to investigate the fundamental trade-offs
between the proposed measure of structural robustness and
other system properties. For example, recently it was shown
that the distances between the nodes have a major impact on
the controllability of consensus networks and there are trade-
offs between the controllability and robustness of such systems
(e.g., [30], [31]). We believe that the results in this paper can
be used for further investigation of such relationships between
important system properties.
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[19] B. Zhou and N. Trinajstić, “A note on Kirchhoff index,” Chemical
Physics Letters, vol. 455, no. 1-3, pp. 120–123, 2008.

[20] I. Milovanovic and E. Milovanovic, “On some lower bounds of the
Kirchhoff index,” MATCH Commun. Math. Comput. Chem., vol. 78,
pp. 169–180, 2017.

[21] O. Goldreich and D. Ron, “Approximating average parameters of
graphs,” Random Structures & Algorithms, vol. 32, no. 4, pp. 473–493,
2008.

[22] S. Sivasubramanian, “Average distance in graphs and eigenvalues,”
Discrete Mathematics, vol. 309, no. 10, pp. 3458–3462, 2009.

[23] S. Gago, “Kirchhoff index of the connections of two networks by an
edge,” Electronic Notes in Discrete Math., vol. 68, pp. 287–292, 2018.

[24] R. Melamed and I. Keidar, “Araneola: A scalable reliable multicast
system for dynamic environments,” in IEEE International Symposium
on Network Computing and Applications, pp. 5–14, 2004.

[25] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-diameter
peer-to-peer networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 6, pp. 995–1002, 2003.

[26] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bulletin of the American Mathematical Society, vol. 43,
no. 4, pp. 439–561, 2006.

[27] J. Friedman, “A proof of Alon’s second eigenvalue conjecture,” in ACM
Symposium on Theory of Computing, pp. 720–724, 2003.

[28] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans. on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
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