
Calculus 3 - Partial Derivatives

In calculus 1 we introduced the derivative. We considered the function

y = f (x) and a secant to the curve that goes through the points (x, f (x))

and (x + h, f (x + h)) (in red). Then we let h → 0 and the secant line (red)

becomes the tangent line (blue)

Mathematically, we define the derivative of a function y = f (x) as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

(1)

So can we define the derivative for functions of more than one indepen-

dent variable? Here we will consider functions of two independent vari-

ables

z = f (x, y) (2)

but these ideas certainly extended to an arbitrary number of independent

variables.
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Consider some surface z = f (x, y)

x y

Here, we will take a slice where we fix y to some value and vary x (left

pic). If we look straight down the y axis we see (right pic)
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This certainly looks like something from Calc 1 and so we can find a

tangent line. So mathematically we have

lim
h→0

f (x + h, y)− f (x, y)
h

(3)

Similarly, we fix x and vary y and look straight down the x axis we see

Again, this looks like something from Calc 1 and so we can find a tangent

line. So mathematically we have

lim
k→0

f (x, y + k)− f (x, y)
k

(4)

So now we define two different derivatives, an x derivative and the y

derivative ( called partial derivatives) and are defined as

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

, (5a)

∂ f
∂y

= lim
k→0

f (x, y + k)− f (x, y)
k

. (5b)
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Abbreviations

As we have abbreviations for ordinary derivatives like y′ or f ′we also have

abbreviations for partial derivatives. These would be

∂ f
∂x

= fx = zx,
∂ f
∂y

= fy = zy (6)

So let’s look at an example. Consider

f (x, y) = 2x− y (7)

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

= lim
h→0

(2(x + h)− y)− (2x− y)
h

= lim
h→0

2x + 2h− y− 2x + y
h

= lim
h→0

2h
h

= 2

(8)

∂ f
∂y

= lim
k→0

f (x, y + k)− f (x, y)
k

,

= lim
k→0

2x− (y + k)− (2x− y)
h

= lim
k→0

2x− y− k− 2x + y
h

= lim
k→0

−k
k

= −1

(9)

so

fx = 2, fy = −1. (10)
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One thing to note is that the partial derivatives are usually different!

Here’s another example

f (x, y) = x2ey (11)

so

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

= lim
h→0

(x + h)2ey − x2ey

h

= lim
h→0

(x2 + 2xh + h2− x2)ey

h

= lim
h→0

(2x + h)hey

h

= lim
h→0

(2x + h)ey

= 2xey

(12)

So you’re probably thinking - is there a short cut? Well yes. Since we

defined these derivatives as fixing one variable and letting the other vary

we are essential treating the fixed variable as constant so in the previous

example

∂ f
∂x

=
∂
(

x2ey
)

∂x
=

∂
(

x2ec
)

∂x
=

∂
(

x2
)

∂x
ec = 2xec = 2xey (13)

To calculate the y derivative we would

∂ f
∂y

=
∂
(

x2ey
)

∂y
=

∂
(

c2ey
)

∂y
= c2

∂
(

ey
)

∂y
= c2ey = x2ey (14)
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With some practice, you won’t have to always replace the fixed variable

with a c.

Example Calculate the partial derivatives for z = ln(x2 + xy4 + 1)

Here we use the change rule first so

zx =
1

x2 + xy4 + 1
· (2x + y4) (15)

Similarly

zy =
1

x2 + xy4 + 1
· 4xy3 (16)

The Differential

If we consider approximating the change in y by moving a small amount

in x, we can use the equation of the tangent. At the point (x0, y0), the

equation of the tangent is

y− y0 = f ′(x0)(x− x0). (17)

Now if we let x = x0 + dx and y = y0 + dy, from (17) we see that

y0 + dy− y0 = f ′(x0)(x0 + dx− x0),

or

dy = f ′(x0)dx,

a relation between the differential dx and dy. We go further and define this

relationship for general x as

dy = f ′(x)dx,
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or

dy =
dy
dx

dx,

which applies for all x. Does this extend to 3−D? Yes. We now follow the

tangent plane. The tangent plane is given by

z− z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0). (18)

Now if we let x = x0 + dx, y = y0 + dy and z = z0 + dz then from (18) we

see that

z0 + dz− z0 = fx(x0, y0)(x0 + dx− x0) + fy(x0, y0)(y0 + dy− y0).

or

dz = fx(x0, y0) dx + fy(x0, y0) dy,

a relation between the differential dx, dy and dz. We go further and define

this relationship for general x and y as

dz = fx dx + fy dy,

or

dz =
∂z
∂x

dx +
∂z
∂y

dy.

Example 1

If z = x2y5, find dz. Calculating the partial derivatives, we find that ∂z
∂x =
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2xy5 and ∂z
∂y = 5x2y4 so the differential dz is

dz = 2xy5 dx + 5x2y4 dy.

Example 2

If z = exy + x sin y, find dz. Calculating the partial derivatives, we find that
∂z
∂x = yexy + sin y and ∂z

∂y = xexy + x cos y so the differential dz is

dz = (yexy + sin y) dx + (xexy + x cos y) dy.

Example 3

If z = x2 + xy + y2, find dz. Calculating the partial derivatives, we find

that ∂z
∂x = 2x + y and ∂z

∂y = x + 2y so the differential dz is

dz = (2x + y) dx + (x + 2y) dy.

Suppose that dz = 0. If so then

(2x + y) dx + (x + 2y) dy = 0

or
dy
dx

= −2x + y
x + 2y

an ODE! Could this idea (the differential be used to find the solution of the

ODE. The reader can verify that indeed the solution of the ODE is

x2 + xy + y2 + c (19)
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