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ABSTRACT
The objective of this work is to develop an efficient and prac-
tical sensor placement method for the failure detection and
localization in water networks. We formulate the problem
as the minimum test cover problem (MTC) with the objec-
tive of selecting the minimum number of sensors required
to uniquely identify and localize pipe failure events. First,
we summarize a single-level sensing model and discuss an
efficient fast greedy approach for solving the MTC problem.
Simulation results on benchmark test networks demonstrate
the efficacy of the fast greedy algorithm. Second, we develop
a multi-level sensing model that captures additional physical
features of the disturbance event, such as the time lapsed be-
tween the occurrence of disturbance and its detection by the
sensor. Our sensor placement approach using MTC extends
to the multi-level sensing model and an improved identifica-
tion performance is obtained via reduced number of sensors
(in comparison to single-level sensing model). In particular,
we investigate the bi-level sensing model to illustrate the ef-
ficacy of employing multi-level sensors for the identification
of failure events. Finally, we suggest extensions of our ap-
proach for the deployment of heterogeneous sensors in water
networks by exploring the trade-off between cost and per-
formance (measured in terms of the identification score of
pipe/link failures).
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1. INTRODUCTION
Sensor placement problems for fault detection, localiza-

tion, and response arise in most engineering disciplines for
secure and resilient system operations. For electric networks,
placement of phasor measurement units monitoring voltage
and current phasors of buses and incident branches has been
suggested for the observability of electric networks under
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normal and critical contingency conditions such as line out-
ages [10]. Intelligent transportation systems heavily rely on
data collected by traffic sensors, where a limited number of
sensors are typically placed to optimize travel times estima-
tion for travel control [20]. Applications of sensors for water
distribution has been extensively studied, primarily consid-
ering deliberate contamination of the water system max-
imizing detection likelihood and minimizing the volume of
contaminated water [7, 8]. Several problem formulations and
solution approaches have been developed and implemented
to solve sensor placement problems in water, transportation,
and electric systems. These approaches include integer and
mixed integer programming based methods [2], submodular
optimization techniques [12], greedy heuristic based solu-
tions [11], and evolutionary algorithms [5], to name a few.

In our previous work [17], we formulated the sensors place-
ment problem for fault location identification as a minimum
test cover problem,which is known to be NP-hard [14]. MTC
problem can be approximately solved by first transforming
it to the well known minimum set cover (MSC) problem,
and then solving MSC using greedy approach [6]. In [17]
we proposed a fast greedy approach for solving the MTC
problem that does not require a complete transformation of
the MTC to the MSC, and directly computes the objective
function in a greedy manner. The algorithm is faster than
the straight-forward greedy approach, which makes it well
suited for large-scale network applications.

In this work, we first discuss the sensor placement problem
over a flow network for the purpose of identification and
localization of link failures (Section 2.3). We then, evaluate
our approach on benchmark test networks. Moreover, we
compare our fast greedy algorithm and the straight-forward
greedy algorithm in terms of the running times required to
solve the MTC problem for various water networks (Section
2.4). Some of the other main features of this work include
the following:

- Single and multi-level sensing models (Section 3). We
develop a multi-level sensing model that extends our
initial single-level model [17]. We generalize the 1-bit
sensors whose output consists of only a binary decision
– detected or not detected failure event. The σ-bit sen-
sor output is one of the multiple (more than two) pos-
sible outcomes. It means that such a sensor not only
detects a disturbance once it occurs, but also encodes
some of the physical features of the disturbance, such
as the time lapsed between the occurrence of distur-
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bance and its detection by the sensor, or the intensity
of the detected disturbance at the sensor. The ad-
vantage of this better sensing technology in the form
of multi-level sensing is twofold: (1) The maximum
number of link failures that can be detected by σ-bit
sensors is greater than the 1-bit sensor. (2) For a given
number of sensors, more link failures can be uniquely
detected by σ-bit sensors as compared to 1-bit sen-
sors. We illustrate these advantages through a specific
case of bi-level sensing using the three water networks
(Section 3.4).

- Heterogeneous sensors (Section 4). We further explore
inclusion of heterogeneous sensors, assuming a limited
number of 1-bit and σ-bit sensors, and demonstrate
that heterogeneous sensors achieve a better trade-off
between the performance and the cost entailed (in terms
of the numbers of 1-bit and σ-bit sensors used). Fur-
thermore, we explore the applicability of network topol-
ogy based criteria for the sensor placement for fault
localization.

The outcome of our approach would be a decision support
tool for the water utilities for sensor placement for failure
detection and localization. Given a budget and the target
performance score, the water utility can select the number,
type, and location of sensors to be placed in the network.
The main steps of the suggested approach involve: (1) defin-
ing the network, events, and sensing models, (2) formulating
the failure identification problem as the minimum test cover
problem, (3) solving the MTC problem, and (4) evaluating
the performance based on multiple criteria.

2. PROBLEM FORMULATION
There are several technologies for active pipe burst de-

tection, which can be categorized into surface, inline, and
online technologies. Surface and inline technologies include
acoustic, thermography, umbilical tools, and advanced au-
tonomous robots, which are principally used to verify and
pinpoint the location of the burst. Their operation is typi-
cally time consuming and costly, and they are also not suit-
able for continuous operation [19]. In this work we consider
the use of online sensors continuously monitoring the system
state, particularly hydraulic pressure sensors for analyzing
the transient flow regime. Pipe burst causes rapid change in
the flow, which moves through the system as a pressure wave
with very high velocity known as water surge [18]. We con-
sider the use of real-time event detection hardware-software
system consisting of sensors continuously measuring water
pressure and analyzing the transient flow regime for detect-
ing the events.

In a previous work [17], we developed network dynamics
in response to pipe failure events, formulated a sensor place-
ment problem for detection and localization as minimum set
and minimum test cover problems respectively, solved the
minimum test cover problem using transformed greedy ap-
proach, and suggested a fast greedy solution approach. To
provide background for our models in Sections 3 and 4, we
summarize the sensor placement problem and discuss the
fast greedy solution approach.

2.1 System model
Given a set of sensors S and a set of events L, the sensor

placement problem is to find a subset of sensor locations

S ⊆ S, such that the sensor network performance function,
which is the location identification of pipe failure events,
is maximized while using the minimum number of sensors.
Consider a set of n pipe failure events, L = {�1, . . . , �n},
where �j denotes the location of the event and a set of m
sensors that can be placed at the nodes of the network, S =
{S1, . . . , Sm}, where Si denotes the location of the ith sensor.
Let p(t) be a vector of the sensed pressures in the system,
and ySi(t, �) be the state (output) of the Si sensor at time t.
Assume ξ : p(·) −→ R be some function characterizing the
distance between the expected and the measured data, then
we define yS(t, �) ∈ {0, 1} to be a discrete sensor state vector
– 0 representing a normal operating state and 1 representing
otherwise. The sensor outcome can then be formulated as:

ySi(t, �) = {1 | ξ (pSi(τ�)) ≥ ε} (1)

where ε is a threshold value and τ� is the time taken by
the sensor to detect the event �. An example of this simple
sensing model would be case in which sensor Si indicates
occurrence of the event whenever change in pressure is above
some threshold value ε.

Single-level sensing: First we introduce the single-level
sensing model, in which during a given time horizon (much
longer than the characteristic time of water surge) the sensor
either detects the event or not. We achieve this by allowing
sensor Si to detect event � in a certain finite time T , thus,
neglecting time dependency of the sensor to detect the event.
Hence, we can restate the output of sensor as:

ySi(�) =

{
1 if ySi(t, �) = 1, for some t ∈ [0 T ]
0 otherwise

(2)
Consequently, for a sensor set S and the set of events L,

we can instantiate a boolean matrix of dimensions |L| × |S|
called as influence matrix and denoted by M. The rows
of the matrix are sensor outputs, yS(�), � ∈ L. Moreover,
Mij = 1 indicates that sensor Si detects a failure in the link
�j , and Mij = 0 implies otherwise. Thus,

M (L,S) =

⎡
⎢⎢⎢⎣

yS(�1)
yS(�2)

...
yS(�n)

⎤
⎥⎥⎥⎦ . (3)

For the set of link failures L, and the set of all available
sensors S, we define a collection of subsets of links, denoted
by C = {Ci : ∀i}, where Ci = {�j ∈ L| ySi(�j) = 1},
for each sensor Si. In other words, Ci ⊆ L is the set of link
failure events detected by the sensor Si and CS is a collection
of Ci’s corresponding to the set of sensors in S ⊆ S.
Example 1a: Consider a small network having 8 nodes

connected by 10 links as shown the Figure 1. A pipe burst
event is simulated in the middle of pipe �1 and system re-
sponse at network nodes is recorded. For the ease of nota-
tions, we designate the failure events as pipes’ ids, �j . The
transient simulations were computed using the HAMMER
software [1].

The first plot in Figure 2 shows the pressure head, p(t),
generated at nodes 2 and 5 in response to the pipe failure
�1. A sharp pressure drop is observed at both nodes. Since
the disturbance arrives first at node 2, the pressure drop at
node 2 is larger and occurs before the pressure drop at node
5. The second plot in Figure 2 shows the sensors’ states
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Figure 1: Illustrative example layout.
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Figure 2: Network dynamics for failure event generated in
pipe �1 in the small example – p(t) pressure head [m] and
yS2,S5(t, �1) – sensors S2 and S5 output in response to event
�1.

indicating detection of the event at node 2 and node 5 ap-
proximately 0.5[sec] and 1.5[sec] respectively after the pipe
burst. Based on the single-level model, both sensors located
at nodes 2 and 5, can detect the failure in pipe �1. Thus, for
SA = {S2, S5}, the sensor state is ySA(�1) = [1, 1]. If sensor
are placed at all the nodes of the system, then the failure
would be detected by sensors located at nodes {1, 2, 3, 5},
and the sensor state would be yS(�1) = [1, 1, 1, 0, 1, 0, 0, 0].
Next, if we consider a single failure event in each pipe of
the network with L = �1, · · · , �10}, then the corresponding
influence matrix is:

M(L,S) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1 S2 S3 S4 S5 S6 S7 S8

�1 1 1 1 0 1 0 0 0
�2 1 1 1 1 0 1 0 0
�3 1 1 0 1 1 0 0 1
�4 1 0 1 1 1 1 1 0
�5 1 0 1 1 0 1 1 0
�6 0 1 1 1 1 0 1 1
�7 0 0 1 1 1 1 1 1
�8 0 1 0 1 1 0 1 1
�9 0 0 1 1 0 1 1 1
�10 0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

2.2 Identification as the minimum test cover
For a set of events L and a set of sensors S, the objective

of the identification problem is to maximize the number of
uniquely identified link failures through the minimum num-
ber of sensors. In other words, based on unique outputs of
sensors, we improve the localization of the event. One way
to achieve that is by selecting a set of sensors S, such that
for every pair of events �i and �j , sensors’ states yS(�i) and
yS(�j) differ by at least one element, i.e. sensors’ state vec-
tor yS(�i) is unique for every event �i ∈ L. In terms of the
influence matrix of the network, this is possible whenever

for every row pair �i, �j , i �= j, there exists a column Cu

with different i and j row entries (i.e., Miu �= Mju). The
objective of the identification problem, denoted by fI(S;L),
is then to find the minimum number of sensors that can dis-
tinguish between the maximum number of pair-wise events.

This problem can be formulated as the minimum test
cover (MTC) problem. The MTC problem is a combinato-
rial optimization problem in which the objective is to select
the minimum number of tests from a collection of tests such
that every event involved can be uniquely classified in one of
the given categories based on the outcomes of selected tests
[14]. In our sensor placement problem for water distribution
networks, set of outcomes of tests are sensors’ states, events
are pipe bursts, and classification categories are locations of
the failed pipes.

Definition 1. (Minimum test cover (MTC)) Given a fi-
nite set L and a collection of subsets C = {Ci : Ci ⊆ L}.
The minimum test cover problem is to find Ct ⊆ C with
the minimum cardinality such that if for a pair of elements
{�u, �v} ∈ L there exists Ci ∈ C that contains exactly one of
�u and �v, then there exists some Cj ∈ Ct that also contains
exactly one of �u and �v.

From the above definition and discussion, we can state the
following [17]:

Proposition 1. Maximizing the identification of link fail-
ures in networks is equivalent to solving the minimum test
cover problem.

Example 1b Following example 1a, consider two sensors
placed at nodes 2 and 4, SA = {S2, S4}. We observe that
although sensors S2 and S4 cover all link failures with C2 ∪
C4 = L, they are not sufficient for identification. Sensors S2

and S4 generate only three unique states for the 10 events,
which makes it impossible to distinguish between all link
failures. For instance, given sensors’ outputs, i.e., ySA(�1) =
[1, 0], we can uniquely identify or localize the failure on link
�1 (see (4)). Given the output [1, 1], we can not uniquely
localize the failure, but identify a set of links �2, �3, �6, or �8,
that are associated with this output of sensors. We later
define this set of links as the localization set.

However, for the set of sensors SB = {S1, S2, S3, S5},
which solve the MTC problem in example 1a, the output
is unique for each link failure and 10 distinct indicator vec-
tors corresponding to each failure event are obtained.

2.3 Fast greedy MTC solution
The minimum test cover problem is NP-hard [6]. One ap-

proach to solve the MTC problem is by first transforming
it to the minimum set cover problem (MSC) [3]. Given an
instance of MTC, i.e., L and C, we obtain a new matrix
Mt(Lt,S) of dimensions

(n
2

)×m in which each row corre-

sponds to a pairwise link failure and each column represents
sensor’s output. The row element is equal to 1 if the cor-
responding column sensor distinguishes �i from �j by pro-
ducing different outputs for �i and �j respectively, i.e., if the
sensor output is 1 in case of �i and 0 for another event �j ,
and vice versa. Next, the MSC can be efficiently solved and
a solution of the original problem can be directly obtained
from the solution of the MSC problem.

The MSC has been extensively studied in the context of
sensor placement for detectability. The detection problem
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can be posed as the MSC problem where the objective is to
maximize the detection of failure events with the minimum
number of sensors. A straight-forward way to solve the MSC
is by the greedy approach. In each iteration, a sensor that
detects the maximum number of uncovered link failures is
selected. This continues until all link failures are covered,
or no further link failure can be detected by any sensor.
The MSC is submodular, i.e. the objective function depicts
the diminishing return behavior. The submodularity prop-
erty can be exploited to further improve the efficiency of the
greedy solution approach by getting rid of the redundant
computations in each iteration [13]. The greedy approach
to solve MTC yields the best possible (1 + 2 lnn) approxi-
mation ratio, where n is the total number of link failures.
Details on the transformation of the MTC problem to the
MSC problem can be found in [3] and accelerated greedy
MSC solution in [13, 12].

However, if n failure events need to be localized, the cor-
responding set cover instance contains

(n
2

)
events, and the

time complexity of the greedy approach is O
(
m

(n
2

))
, where

m is the total number of sensors. Even for small networks
with a small number of link failures, this approach becomes
extremely inefficient owing to a large number of computa-
tions required. Moreover, employing accelerated greedy also
does not solve the problem due to a large number of events
in the event space. Next, we propose a fast greedy approach
to improve the time complexity of the identification solution.

2.3.1 Main algorithm
The main idea of the fast greedy approach is to avoid the

complete transformation of the MTC to the MSC and reduc-
ing the number of comparisons made in each step. Instead

of O
(
m

(n
2

))
comparisons, in our algorithm, the number

of comparisons made for each sensor in a single iteration

is always bounded by O
(
K

(k
2

))
, where k is the maximum

number of link failures detected by any sensor, and K is
the number of sensors that are included in the test cover
until that iteration. Since k is typically much smaller than
n, a large number of computations are thus avoided in each
iteration.

Before explaining our algorithm, we note that:

• A sensor i that detects k link failures, detects k(n−k)
pairwise link failures, since a sensor can distinguish be-
tween k detected events and (n−k) undetected events.
Unlike the detection problem in which a sensor with a
large k is desirable for the detection purposes, a sen-
sor that detects a large number of failures is not always
useful for the identification.

• A distinction between the occurrence of events �u and
�v is not possible through the sensor i whenever both
�u, �v ∈ Ci, or �u, �v �∈ Ci. Thus, if a sensor i is selected
in the test cover, then sensor(s) that can distinguish
between events �u, �v ∈ Ci also need to be included in
the test cover.

Based on these observations, two components contribute
to the overall utility of adding a sensor Si to the test cover:
(i) the number of pairwise events corresponding to the links
that are not already covered by existing sensors (i.e. sen-
sors selected in previous iterations) that can be detected by

the sensor Si and (ii) the number of undetected pairwise
events by existing sensors that can be detected by sensor
Si. We denote the overall utility by wi and the individual
contributions, (i) and (ii), as xi and yi.
Consider L the set of link failures, S the set of available

sensors, Cu ⊆ L the set of link failures detected by the sensor
Su, and C the collection of all such Cu’s. We define C∗ ⊆ C
to be the test cover under construction, and Ccov be the set
of link failures detected by the sensors that are included in
the test cover under the construction, i.e., Ccov =

⋃
Cu∈C∗

Cu.

Then the utility of adding sensor Si to the test cover, i.e.
adding Ci to C∗ is computed as the sum of xi and yi. In
each iteration j, we compute xi and yi as:

• xi – if nj is the number of link failures that are not yet
included in Ccov, (i.e., nj = n−|Ccov|), and Ci contains
ki of such link failures, then xi = ki(nj − ki).

• yi – if a sensor Su is already included in the test cover,
then the pairwise link failures corresponding to the
links in Cu remain undetected. Thus, yi computes how
many of such pair-wise link failures can be detected by
the inclusion of sensor Si in the test cover.

A sensor Si∗ that maximizes this overall utility wi∗ , will
then be included in the test cover, and Ccov will be updated
to Ccov ← Ccov ∪ Ci∗ .
The steps of the fast greedy algorithm for the solution of

the MTC are given in Algorithm 1. Additionally, to support
Algorithm 1, we define:

β(X) = set of all 2-element subsets of X,

and
α(Y, β(X)) = {a ∈ β(X) : |Y ∩ a| = 1},

where X and Y are two sets,α(Y, β(X)) is a set consist-
ing of such 2-element subsets of X that have exactly one
common element with Y . For instance, if X = {1, 2, 3}
and Y = {1, 3}, then β(X) = {{1, 2}, {1, 3}, {2, 3}}, and
α(Y, β(X)) = {{1, 2}, {2, 3}}.

To compute yi, first we compute the set of common link
failures in Ci and Ccov and call it as Yi = Ci ∩ Ccov. Now, if
Su is already in the test cover, and Gu ⊆ β(Xu) is the set of
undetected pair-wise link failures corresponding to the links
in Xu ⊆ Cu, then

yi =
∑

Cu∈C∗
|α(Yi, Gu)|

Algorithm 1 is basically an efficient implementation of the
greedy approach for the MTC problem, and has the same
approximation ratio as the standard greedy algorithm.

2.4 Applications
In all our simulations we: (1) consider a single failure

event occurring at the center of each pipe; (2) enumerate
all possible failure events in each network; (3) consider the
shortest distance threshold model, ySi(�) = {1 | d(Si, �) ≤
ε} [4] with ε = 1[km]. We assume that the disturbance in
pressure can be sensed while within a specified distance from
the location of the burst, where d is the length of the shortest
path between two locations Si and � and ε is the detectable
travel distance; and (4) solve the identification problem for
the single-level sensing model using the transformed greedy
(TG) and the fast greedy (FG) approaches.

150



Algorithm 1 Minimum Test Cover - Fast Greedy

1: Input: C = {C1, · · · , Cm}, Ci ⊆ L
2: Output: MTC: C∗ ⊆ C
3: Initialization: Ccov = ∅; C∗ = ∅; G0 = ∅; j = 1; wi∗ = 1;
4: while wi∗ > 0 do
5: nj ← n− |Ccov |
6: for all i do
7: Xi ← (Ci \ Ccov) ; ki ← |Xi|
8: xi ← ki(nj − ki)
9: Yi ← Ci ∩ Ccov
10: yi ←

j−1∑

t=0
|α(Yi, Gt)|

11: wi = xi + yi
12: end for
13: wi∗ ← maxwi

14: if wi∗ > 0 then
15: C∗ ← C∗ ∪ {Ci∗}
16: Ccov ← Ccov ∪ Ci∗
17: Gj ← β(Xi∗ )
18: for t = 0 to j − 1 do
19: Gt ← Gt \ α(Yi∗ , Gt)
20: end for
21: j ← j + 1
22: end if
23: end while

We evaluate the performance of the sensor placement based
on four scores:

1. Identification – is the number of uniquely identified
pairs of events by a given set of sensors S. The identi-
fication score is the objective function of our optimiza-
tion problem. The normalized identification score, II(S;L),
is the ratio of the detected pair-wise events to the total
number of pair-wise events.

2. Detection – is the number of events that are detected
by at least one sensor in the given set of sensors S.
The normalized detection score, denoted by ID(S;L),
is then the ratio of the total number of detected events
given a sensor set S to the total number of event fail-
ures |L|.

3. Localization – is defined as the number of localization
sets, where each localization set is associated with a
unique sensors’ state. Let L ⊆ L be a localization
set under the sensor configuration S if for all �i ∈ L,
the outputs of sensors in S remain the same. In other
words, it is not possible to distinguish between fail-
ure events in a localization set based on sensors’ out-
puts. The normalized localization score, denoted by
IL(S;L), is the ratio of the number of unique localiza-
tion sets formed under the sensor configuration S to
the total number of event failures.

Ideally, all three normalized performance scores should be
equal to 1, indicating that each fault can be detected and
uniquely identified. We apply our approach on three real
water systems [9, 15]. Net1 is a benchmark system that has
been previously extensively studied in the context of sen-
sor placement for water quality [15]. The system consists
of 168 pipes, 126 nodes, one reservoir, one pump, and two
storage tanks and its layout is shown in Figure 3a. The sys-
tem supplies a daily demand of 5.15× 103[m3/day] and has
a total pipe length of 37.5[km]. Net2 and Net3 were orig-
inally collected by the Kentucky Infrastructure Authority.

(a) Net 1 (b) Net 2 (c) Net 3

Figure 3: Layouts of networks

Table 1: Networks data and simulation results

Network
No. of No. of No. of TG FG
pipes nodes sensors [sec] [sec]

Net1 168 126 48 14.03 4.94
Net2 366 269 98 143.69 34.77
Net3 496 420 134 415.83 98.76

TG - transformed greedy; FG - fast greedy;

The systems supply 7.6 and 8.58 × 103[m3/day] daily de-
mand of and have a total pipe length of 91.3 and 96.6[km],
respectively. Network layout are shown in Figures 3b -3c
and main features are summarized in Table 1. Full data and
hydraulic model can be obtained from [9].

We first formulate the identification problem as the MTC
(Section 2.2) based on the single-level sensing model. We
then solve the optimization problem using the transformed
greedy (TG) and the fast greedy (FG) approaches (Section
2.3), and compare solutions and running times of the two
approaches. The solutions based on TG and FG approaches
were identical, as suggested in Section 2.3. Figure 4 shows
the normalized identification score II(S;L) as a function of
the number of sensors for the three networks. The iden-
tification score function exhibits the submodular property,
i.e. diminishing return behavior. The number of sensors
required for the maximum identification, and running times
[sec] required for each network are listed in Table 1. The
results indicate that, as expected for networks with larger
pipe length and failure events, the required number of sen-
sors is larger as well. Additionally, the FG approach was
found to be 2.8 to 4.2 times faster than the TG approach
for the given networks and require significantly less memory.

Next, for each network we evaluate the detection and lo-
calization scores as a function of the number of sensors for
each solution of the identification problem. We observe that
the detection score (Figure 5a) behaves similarly to the iden-
tification score (Figure 4), although not truly submodular.
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Figure 4: Identification score as a function of the number of
sensors for – Net1, Net2, and Net3
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(b) Localization

Figure 5: Detection and localization evaluation as a function
of the number of sensors for – Net1, Net2, and Net3

The identification and detection scores are improved to a
greater extent with the first few sensors |S| < 20, and only
minor improvements are seen when more sensors are added.
The localization score (Figure 5b) exhibits a more gradu-
ate improvement with each added sensor and does not reach
the theoretical maximum of 1, even when more sensors are
added. This can be primarily attributed to the single-level
sensing model that captures only a single-level of the event
dynamics. Additional factors that affect this behavior are
network structure and the dynamics of the failure event.

3. HIGH RESOLUTION SENSORS
Previously, we have considered single-level sensing model,

i.e. 1-bit sensors whose output consisted of only one binary
decision – failure event is detected and failure event is not
detected. However, a more general scenario would be to have
the sensor output consisting of more than two possible out-
comes, in which case multiple output bits would be needed.
For instance, the time stamp and intensity of the detected
event might also be encoded in the sensor output. We define
this as multi-level or σ-bit sensing model.

3.1 Multi-level sensing model
In a simplistic scenario, we assume that a sensor, if able

to detect, can only detect a failure event within the T time
duration of the occurrence of the event. This is a valid
assumption as the signal (such as pressure wave) gener-
ated as a result of the failure event typically decays with
time as it travels more distance within the network. Thus,
the output of the sensor can be made of higher resolution
by dividing the interval [0 T ] into further σ sub-intervals
such as [0 t1) , [t1 t2) , · · · , [tσ−1 T ], where 0 < t1 < t2 <
· · · , tσ−1 < T . The time taken by the sensor to detect an
event would then lie in one of these intervals. Thus, there are
(σ+1) possible outcomes of a sensor including the outcome
corresponding to the no detection of the event. Note that
at least �log2(σ + 1) bits would be needed to encode the
sensor output in this case. For instance, if the interval [0 T ]
is divided into two sub-intervals [0 t1) and [t1 T ], where
t1 < T , then we get the following possible sensor outputs:

1. Event is not detected at all, corresponding to the two
bit output of (0 0),

2. Event is detected early, i.e., within a certain time thresh-
old [0 t1) after its occurrence, represented by the two-
bit output of (1 0),

3. Event is detected later, i.e., within the interval [t1 T ],
represented by the output (0 1).

Now, exploiting a direct relationship between the time
taken by the signal (such as pressure wave) to reach the sen-
sor and the distance traveled by the signal from the point of
origin to the sensor, we can develop a high resolution version
of the single-level sensing model discussed previously. In the
single-level model, a 1-bit sensor Si could detect a failure on
a link � whenever ξ(pSi(t)) ≤ ε, i.e.,

ySi(t, �) = {1 | ξ(pSi(t)) ≤ ε for some t ∈ [0 T ]} .
Now, let τ� be the time taken by the sensor to detect the
event � after its occurrence, then τ� lies in one of the sub-
intervals of [0 T ]. Note that τ� depends on the event �.
Based on the sub-interval in which τ� lies in, a 2−bit output
of the sensor can be obtained as follows:

ySi(�) =

⎧⎨
⎩

(1 0) if ySi(τ�, �) = 1, for some τ� ∈ [0 t1)
(0 1) if ySi(τ�, �) = 1, for some τ� ∈ [t1 T ]
(0 0) otherwise.

(5)
The model can be extended to σ-bit output in a similar way
by dividing the interval [0 T ] into σ further sub-intervals.
As previously, if yS(�) = [yS1(�), · · · ,ySm(�)] is a boolean
vector with 2m entries corresponding to the outputs of m
sensors in response to the failure event �, then a 2-bit influ-
ence matrix, denoted by M̆(L,S), could be defined as,

M̆(L,S) =

⎡
⎢⎢⎢⎣

yS(�1)
yS(�2)

...
yS(�n)

⎤
⎥⎥⎥⎦ (6)

Example 1c: Continuing with the example network in Sec-
tion 2.2, we illustrate the 2-bit model. A sensor can either
detect a failure event within [0 1.5][sec], or not at all. This
interval is further divided into two sub-intervals, [0 0.75)
and [0.75 1.5][sec]. The detection of failure event within
t ∈ [0 0.75)[sec] of its occurrence results in an output of
(1 0), whereas, detection within t ∈ [0.75 1.5][sec] ren-
ders the output (0 1). For instance, the failure in �1
is detected by sensors S1, S2 within 0.5[sec], and by sen-
sors S3, S5 within 1.5[sec]. Thus, for SA = {1, 2, 3, 5}, we
get ySA = [1, 0, 1, 0, 0, 1, 0, 1]. The 2-bit influence matrix

M̆(L,S) for the single failure events in the network is,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where each 2-bit sensor output is represented by a pair of
columns.

3.2 Identification through multi-level sensing
The objective of identification of link failures through σ-

bit sensors remains the same as with the 1-bit sensors, i.e.
maximizing the identification of link failures using the min-
imum number of sensors. The basic idea is same – select
the minimum number of sensors to maximize the detection
of pair-wise link failures. However, as a result of multiple
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output bits, more pairwise link failures can now be detected
by the multiple output bits sensor as compared to the 1-bit
sensor as explained below. This leads to the lesser number
of sensors required to achieve the same level of identifica-
tion in the network. For instance, in the above example, in
comparison to the four sensors required in the case of 1-bit
sensors for complete identification, three sensors {S2, S3, S4}
are sufficient when 2-bit sensors are used.

3.2.1 1-bit vs. σ-bit sensors
If the number of events detected by a 1-bit sensor is k,

then the number of pair-wise link failures detected by the
sensor, denoted by P1, is

P1 = k(n− k) (7)

where n is the total number of events. 1-bit sensor can be re-
placed by a σ-bit sensor, in which the threshold of detection
is divided into σ further levels, i.e., [0 T ] interval is further
divided into σ sub-intervals. Each of the σ output bits cor-
responds to one of the sub-intervals and is 1 whenever the
event is detected within the sub-interval, and 0 otherwise.
Let ki be the number of events detected by the ith output
bit in the σ-bit sensor, i.e., the number of events detected
by the sensor in the ith sub-interval of [0 T ]. Note that the
total number of link failures detected by the 1-bit sensor and
the corresponding σ-bit sensor described here are same, i.e,
σ∑

i=1

ki = k. However, the number of pair-wise link failures

detected by the σ-bit sensor, denoted by Pσ, are

Pσ =
σ∑

i=1

(ki(n− ki))−
σ−1∑
x=1

∑
y>x

(kxky) (8)

which is the number of pair-wise link failures detected by
each ithbit minus the number of pair-wise link failures mu-
tually detected by the pairs of output bits.

To compare pair-wise link failures detected by the 1-bit
and the corresponding σ-bit sensors, we use (7) and (8).

P1 = k(n− k) =

(
σ∑

i=1

ki

)(
n−

σ∑
i=1

ki

)

=

(
σ∑

i=1

ki(n− ki)

)
− 2

(
σ−1∑
x=1

σ∑
y>x

kxky

)

= Pσ −
(

σ−1∑
x=1

σ∑
y>x

kxky

)
(9)

Thus, the σ-bit sensor detects
σ−1∑
x=1

σ∑
y>x

kxky more pair-wise

link failures as compared to the corresponding 1-bit sensor.
Moreover, depending on the values of ki, ∀i ∈ {1, · · · , σ},
such that

σ∑
i=1

ki = k, we get the following,

P1 + (σ − 1)
(
k − σ

2

)
≤ Pσ ≤ P1 +

(
k2(σ − 1)

2σ

)
(10)

Note that the lower bound is achieved when ki = 1 for all i
but one, for which the value is k−σ+1. Similarly, the upper
bound is achieved when ki =

k
σ
for all i ∈ {1, · · · , σ}. For a

2-bit sensor, in which k1 and k2 are the number of detected
events by the first and second bits respectively, the number

of pair-wise link failures detected is

P2 = k1(n− k1) + k2(n− k2)− k1k2 (11)

Comparing it to the pair-wise link failures detected by the
corresponding 1-bit sensor in which k = k1+k2 is the number
of detected link failures, we get

P1 + (k − 1) ≤ P2 ≤
(
P1 +

k2

4

)
(12)

3.3 Solving the multi-level MTC problem
To solve identification problem through σ-bit sensors, we

can modify the transformed greedy algorithm for the test
cover problem. The algorithm consists of two main steps
– transforming the test cover to the equivalent set cover
problem and solving the set cover problem using greedy ap-
proach.

Given a σ-bit influence matrix M̆(L,S) of dimension n×
σm, in which rows correspond to the n events in L and
columns correspond to the m number of σ-bit sensors in
S. Note that the consecutive columns indexed by {(σu +
1), (σu + 2), · · · , (σu + σ)} represent the output of sensor
Su+1, where u ∈ {0, 1, · · · ,m− 1}.

1. Transformation of the Test Cover to Set Cover: From
M̆(L,S), we obtain a new matrix M̆T (L,S) of di-
mensions

(n
2

)×mσ, in which rows correspond to the

pair-wise link failures, i.e.

{�1�2, �1�3, · · · , �1�n, �2�3, �2�4, · · · , �n−1�n}
In M̆T , the row entry corresponding to �i�j pair-wise
event of the (σu+p)th column represents the outcome
of pth output bit of sensor Su+1 for u = {0, 1, · · · ,m−
1} and p = {1, · · · , σ}. This entry is 1 whenever pth

output of sensor Su+1 detects either �i or �j , but not

both, i.e., either M̆i,(σu+p) = 1, or M̆j,(σu+p) = 1,

where M̆ is the σ-bit influence matrix. This implies
that Su+1 can distinguish between events �i and �j
through its pth output bit.

2. Solving Set Cover Using Greedy: Once M̆T is con-
structed from M̆, the objective is to select the mini-
mum number of sensors so that all pairwise events are
detected, which is basically a set cover problem. We
select iteratively, a sensor Su+1 that detects the max-
imum number of uncovered pair-wise events, i.e., the
set of columns {(σu + 1), (σu + 2), · · · , (σu + σ)} in

M̆T for u ∈ {0, 1, · · · ,m − 1} that collectively covers
the maximum number of uncovered pair-wise events.

3.4 Simulation results
In this section, we illustrate the significance of using the

multi-level sensing model. In particular, we formulate and
solve the identification problem considering 2-bit sensors for
the three networks. The results demonstrate the advantage
of using 2-bit sensors in terms of improvement in localiza-
tion of the failure events and the required number of sensors
compared to the 1-bit sensors.

The maximum number of link failures that can be uniquely
identified by sensors primarily depends on the network topol-
ogy and the sensing model, i.e. either 1-bit or σ-bit. It is
possible that complete identification might not be achieved
even if a sensor is placed at every node within the network.
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Thus, maximum number of link failures that can be uniquely
detected or identified is of interest in the context of sensor
placement. Another metric to quantify the performance of
sensor placement is the number of sensors required to achieve
the maximum identification. Thus, σ-bit sensors for σ > 1
would be better than 1-bit sensors if

1. The maximum number of link failures that can be
uniquely detected by σ-bit sensors is greater than in
the case of 1-bit sensors.

2. For a given number of sensors, more link failures can
be uniquely detected by σ-bit sensors as compared to
1-bit case.

As illustrated in the following simulations for the 2-bit
sensing model, both (1) and (2) are achieved in the three
water networks. We consider the sensor placement for lo-
calization in three real water networks as defined in Section
2.4 using 2-bit sensors. For a single failure event � occurring
at the center of each pipe, the output of a 2-bit sensor Si,
denoted by ySi(�), is defined as follows:

ySi(�) =

⎧⎨
⎩

(1 0) if d(Si, �) < d1
(0 1) if d1 ≤ d(Si, �) ≤ d2
(0 0) otherwise

(13)

where d(Si, �) is the length of the shortest path between Si

and �, d1 = 0.5[km], and d2 = 1[km]. The transformation
from time interval to length interval can be easily deduced
through the propagation velocity of the pressure wave. Note
that the previous threshold of 1[km], which corresponds to
the maximum time within which an event � can be detected,
is now divided into two further thresholds, which correspond
to the two sub-intervals of time within which the event can
be detected by the sensor.

Figures 6a-6c compare the localization performance achieved
through 1-bit and 2-bit sensing models for the three net-
works. Table 2 summarizes the maximum localization score
and the number of sensors required based on the two sens-
ing models. Note that using 2-bit sensors, the localiza-
tion score increases significantly compared to 1-bit sensors.
Moreover, for Net2 and Net3, the number of sensors required
to achieve maximum localization is smaller compared to the
corresponding cases of 1-bit sensors. This two-fold advan-
tage entailed by 2-bit sensors, which are the simplest in-
stance of multi-bit sensors, make them particularly attrac-
tive for the fault localization in urban water networks.

Table 2: Optimal solutions for single and bi-level sensing

1-bit 2-bit

Network
No. of Max No. of Max
sensors LS sensors LS

Net1 48 110 48 150
Net2 98 317 80 351
Net3 134 427 106 461

LS - localization score;

The results demonstrate that the minimum test cover for-
mulation provides a promising decision support tool for the
identification problem. The decision on the number of sen-
sors is affected, in addition to budget constraint, by the de-
tection and localization performance. The number of sensors
required for the localization of failure events is significantly

large as compared to detection of the events. In the next
section, we extend the single-level sensing model to a multi-
level sensing model that considers higher resolution sensors
and event detection schemes.

4. HETEROGENEOUS SENSORS
Multi-level sensing can improve the localization perfor-

mance in terms of increasing the maximum number of link
failures that can be uniquely identified while minimizing the
required number of sensors. However, multi-level sensors
may incur additional cost by requiring higher sampling and
data transmission rates. To have a trade-off between cost
and localization performance, another approach could be to
utilize heterogeneous sensors, rather than using same sensors
throughout the network. In this regard, some of the issues
of great significance are as follows:

- How can we define and characterize heterogeneous sen-
sors, specially in the context of urban water networks?

- Does deploying heterogeneous sensors allow a trade-
off between performance and cost, which might be de-
picted by the number of sensors required?

- Where should these heterogeneous sensors be deployed
within the network? In particular, how can we use the
underlying network structure to determine potential
locations for heterogeneous sensors?

Heterogeneity can be viewed along a number of dimen-
sions, including the classification of sensors based on the
physical aspects of the network being measured by the sen-
sors, such as pressure, flow, or water quality [16]. Another
distinction, even among the sensors which measure the same
physical quantity, can be made based on their detection
ranges and the detection algorithms used. For instance, sen-
sors may be different in terms of their ability to detect the
pressure signal generated at various distances.Yet another
aspect of heterogeneity, which we use in the remainder of
this section, can be construed in terms of the sensing levels,
such that the value of σ is different for various sensors, as
we explained in the setup of multi-level sensing. Note that
in this case, sensors might have same detection ranges, but
they are different in terms of the number of levels into which
they classify their outputs such as 1-bit, 2-bits, etc.

In regards to the second question above, we illustrate us-
ing networks 1 and 2, and 1-bit and 2-bit sensors, that het-
erogeneous sensors leverage a trade-off between localization
performance and the associated cost. The cost can be viewed
in terms of the number of deployed sensors of various levels.
Low level sensing is typically assumed to incur a smaller cost
as compared to the high level sensing. In the case of all 1-
bit sensors, the maximum localization scores (using greedy
approach) achieved in networks 1 and 2 are 110 and 317
respectively (Table 2). This required 48 sensors for the net-
work 1 and 98 for the network 2. How much could these
scores be improved if few of these 1-bit sensors are replaced
by the 2-bit ones? As shown in Table 2, the maximum lo-
calization scores with all 2-bit sensors are 150 and 351 for
the networks 1 and 2, respectively, we expect the maximum
scores to be in the ranges 110–150 for the network 1 and
317–351 for the network 2 when a mix of 1-bit and 2-bit
sensors are used. We fix the total number of sensors, 50 and
100 for the networks 1 and 2, respectively, and compute the
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Figure 6: Localization performance for single-level (black squares) and bi-level (red triangles) sensing models
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Figure 7: Localization scores obtained using various num-
bers of 1-bit and 2-bit sensors. The upper and lower hori-
zontal lines indicate respectively the maximum localization
scores that can be achieved when all 1-bit and all 2-bit sen-
sors are used.

maximum scores for various combinations of heterogeneous
sensors. Figure 7 shows the localization score as a function
of the number of 2-bit sensors based on the results. These
plots demonstrate the trade-off between localization perfor-
mance and the cost in terms of the number of heterogeneous
sensors employed.

To address the last question, we examine sensor place-
ment purely on network topology based metrics, in which
the preference to deploy resources is given to the nodes that
are important purely from the underlying graph perspec-
tives, such as node degree1 and betweenness centrality2. To
illustrate this, for both networks 1 and 2, we first rank their
nodes based on the network topology based measures of de-
gree and betweenness centrality separately. We then fix the
total number of sensors and assign the available number of
2-bit and 1-bit sensors to nodes in the decreasing order of
their ranks, while giving a preference to the 2-bit sensors.
The localization scores are then computed for various num-
ber of available 2-bit and 1-bit sensors. For comparison pur-
poses, in a separate experiment, we assign the given number
of 2-bit and 1-bit sensors randomly (as per uniform distri-
bution), and compute the localization scores of the resulting
sensor configurations. Finally, we compare the results with
the greedy selection of the nodes for the 2-bit and 1-bit sen-
sors (as computed in Figure 7). In Figure 8, a comparison
of approaches (network topology based, random, greedy se-

1The degree of a node in a graph is the number of nodes (or
edges) that are adjacent the node.
2The betweenness centrality of a node is the number of
shortest paths from all nodes to all others that pass through
that node.
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Figure 8: Comparisons of localization scores for 1-bit and
2-bit sensors placed using different topology metrics

lection) for the placement of 2-bit and 1-bit sensors is shown
in terms of the computed localization scores.

In fact, our simulations illustrate that purely network
based metrics serve as a bad choice for the sensor place-
ment, in which higher level sensors are placed on the central
locations in the underlying network graph. In physical net-
works, such as water distribution systems, the dynamics of
physical process are crucial along with the network structure
information for the most effective distribution of resources,
including high and low level sensors for the failure detec-
tion. Thus, more carefully designed network based measures
that also incorporate the physical aspects of the system are
needed for the placement of heterogeneous sensors for the
fault localization.

5. CONCLUSIONS
In this work, we proposed an efficient and practical method

for sensor placement for failure detection and localization in
water networks. The main contribution of this work are:
(1) formulating the identification problem as minimum test
cover problem, (2) suggesting an efficient fast greedy algo-
rithm to solve the optimization problem, (3) introducing a
multi-level sensing model to capture different types of avail-
able sensors and event detection schemes, and (4) controlling
network performance by considering heterogeneous sensors.
Multi-level sensing improves fault localization both in terms
of improving the localization scores and reducing the re-
quired number of sensors, though it may incur additional
cost. Heterogeneous sensing, on the other hand, leverages a
trade-off between cost and performance. So, which of the fol-
lowing options serve as the best choice for sensor placement
for fault localization in urban water networks: (1) all low-
level sensors, (2) all high-level sensors, or (3) heterogeneous
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sensors. There might not be a straight-forward answer here
as a number of factors play a significant role in the selec-
tion. Among others, some of these factors include the cost
of network reinforcement, the quality of online detection and
corresponding cost of delay in response, robustness to ran-
dom failures in the sensor network, and resilience to strategic
failures in the sensor network. Thus, sensors’ selection and
placement criteria that can incorporate simultaneously all
major aspects of the fault localization performance are cru-
cial for a design of a comprehensive decision support tool
for the fault localization in water networks, and is also our
future work.
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