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Abstract. In the 1970’s, Serre exploited congruences between q-expansion coefficients
of Eisenstein series to produce p-adic families of Eisenstein series and, in turn, p-adic
zeta functions. Partly through integration with more recent machinery, including Katz’s
approach to p-adic differential operators, his strategy has influenced four decades of devel-
opments. Prior papers employing Katz’s and Serre’s ideas exploiting differential operators
and congruences to produce families of automorphic forms rely crucially on q-expansions
of automorphic forms.

The overarching goal of the present paper is to adapt the strategy to automorphic forms
on unitary groups, which lack q-expansions when the signature is of the form (a, b), a ≠ b.
In particular, this paper completely removes the restrictions on the signature present in
prior work. As intermediate steps, we achieve two key objectives. First, partly by carefully
analyzing the action of the Young symmetrizer on Serre-Tate expansions, we explicitly
describe the action of differential operators on the Serre-Tate expansions of automorphic
forms on unitary groups of arbitrary signature. As a direct consequence, for each unitary
group, we obtain congruences and families analogous to those studied by Katz and Serre.
Second, via a novel lifting argument, we construct a p-adic measure taking values in the
space of p-adic automorphic forms on unitary groups of any prescribed signature. We
relate the values of this measure to an explicit p-adic family of Eisenstein series. One
application of our results is to the recently completed construction of p-adic L-functions
for unitary groups by the first named author, Harris, Li, and Skinner.
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1. Introduction

1.1. Motivation and context.

1.1.1. Influence of a key idea of Serre about congruences. J.-P. Serre’s idea to exploit con-
gruences between Fourier coefficients of Eisenstein series to construct certain p-adic zeta-
functions continues to have a far-reaching impact. His strategy has led to numerous develop-
ments, partly through integration with more recent machinery. For example, his approach
is seen in work on the Iwasawa Main Conjecture (e.g. in [SU14]). Emblematic of the reach
of Serre’s idea to interpolate Fourier coefficients of Eisenstein series, his p-adic families of
Eisenstein series also occur even in homotopy theory, as the Witten genus, an invariant of
certain manifolds [Hop02, AHR10].

Serre’s idea in [Ser73] has been employed in increasingly sophisticated settings. J. Coates
and W. Sinnott extended it to construct p-adic L-functions over real quadratic fields [CS74],
followed by P. Deligne and K. Ribet over totally real fields [DR80]. Developing it further,
N. Katz handled CM fields K (when p splits in K), using congruences between Fourier
coefficients of Eisenstein series in the space of Hilbert modular forms [Kat78]. Using Katz’s
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Eisenstein series, H. Hida produced p-adic L-functions of families of ordinary cusp forms
[Hid91], leading to A. Panchishkin’s p-adic L-functions of non-ordinary families [Pan03].

The p-adic families of Eisenstein series on unitary groups of signature (n,n) in [Eis15, Eis14,
Eis16] and related families of automorphic forms for arbitrary signature in Theorem 7.2.3 of
this paper play a key role in the recent construction of p-adic L-functions for unitary groups
[EHLS16]. (The related approach proposed in [HLS06], on which [EHLS16] elaborates,
also inspired work in [Bou14, EW16, Hsi14, Liu16, Wan15].) These p-adic families also
conjecturally give an analogue of the Witten genus, at least for signature (1, n) [Beh09].

1.1.2. An inspiration for four decades of innovations and the necessity of more. Most of the
four decades of developments in Section 1.1.1 require increasingly sophisticated methods,
even though the overarching strategy (“find a family of Eisenstein series, observe congru-
ences, relate to an L-function”) is well-established. The devil is in the details. We now
highlight three ingredients from the above constructions most relevant to the details of the
present work: (1) q-expansions; (2) differential operators; (3) Eisenstein series.

(1) q-expansions. All prior papers employing Serre’s idea to exploit congruences between
Eisenstein series rely crucially on the q-expansions of automorphic forms. The key goal
of the present paper is to extend the aforementioned strategies to automorphic forms on
unitary groups, which lack q-expansions when the signature is not (n,n). In their place,
we use Serre-Tate expansions (or t-expansions), expansions at ordinary CM points (whose
structure leads to a natural choice of coordinates, Serre-Tate coordinates) and the Serre-Tate
Expansion Principle [EFMV16, Theorem 5.14, Proposition 5.5, Corollary 5.16].

(2) Differential operators. A key innovation of Katz in [Kat78] is the construction of
p-adic differential operators (generalizing the Maass-Shimura operators studied extensively
by Harris and Shimura [Har81, Shi97, Shi00, Shi84]) and a description of their action on
q-expansions, when p splits in the CM field. Lacking q-expansions, we compute the action of
differential operators on Serre-Tate expansions and, as a consequence, produce congruences
and families of p-adic automorphic forms. Our work builds on [Eis09, Eis12, EFMV16,
Kat81, Bro13] and requires careful analysis of the action of Schur functors (in particular
the Young symmetrizer) on Serre-Tate expansions. (In a different direction, E. Goren and
E. de Shalit recently constructed p-adic differential operators for signature (2,1) with p
inert [dSG16].)

(3) Eisenstein series. The constructions in Section 1.1.1 rely on congruences between
q-expansion coefficients of Eisenstein series. For unitary groups of arbitrary signature, we
compensate with explicit computation of the action of the Young symmetrizer on Serre-
Tate coordinates. Also applying a novel lifting argument to the Eisenstein series on unitary
groups of signature (n,n) constructed in [Eis15, Eis14] independently of Serre-Tate coordi-
nates, we also construct explicit p-adic families for arbitrary signature.

1.2. This paper’s main results, innovations, and connections with prior work.
As noted above, a key accomplishment of this work is that it produces families without
needing q-expansions and thus is applicable to unitary groups of all signatures. The results
and techniques in this paper carry over to the automorphic forms in other papers extending
Serre’s strategy (i.e. Siegel modular forms, Hilbert modular forms, and modular forms) but
are unnecessary in those settings (since they have q-expansions).

As a consequence of the work in the first sections of this paper, we finish the problem of
constructing p-adic families sufficient for the p-adic L-functions in [EHLS16], completely
eliminating conditions on signatures. We also expect our results on Serre-Tate expansions
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to have applications to the extension to the setting of unitary groups of the results of A.
Burungale and Hida on µ-invariants [BH14].

1.2.1. Three main results. Main Results 1, 2, and 3 below rely on a careful application of a
combination of arithmetic geometric, representation theoretic, and number theoretic tools.
We denote by V the space of p-adic automorphic forms (global sections of a line bundle
over the Igusa tower, as defined by Hida in [Hid04]) on a unitary group G.

Main Result 1 (summary of Theorem 5.2.6 and Corollary 5.2.8). For each classical or p-
adic weight κ (viewed as a character) meeting mild conditions, there is a p-adic differential
operator Θκ acting on V , with the property that if κ ≡ κ′ modpe for some e, then Θκf ≡
Θκ′f modpe. As a consequence, one can use the operators to obtain p-adic families of forms.

Main Result 2 (summary of Theorem 5.1.3 and Corollary 5.2.10). While constructing and
explicitly describing the action of Θκ on Serre-Tate expansions (also called t-expansions), we
compute the precise polynomials (in the proof of Proposition 5.2.4) by which the coefficients
in the expansion are multiplied upon applying the differential operators.

Main Result 3 (summary of Theorem 7.2.3). There is a p-adic measure taking values in
V and providing an explicit family of p-adic automorphic forms closely related to the C∞

Eisenstein series studied by Shimura in [Shi97].

1.2.2. Methods. The construction of the differential operators builds on earlier results on p-
adic differential operators in [Kat78] (for Hilbert modular forms), [Eis12, Eis16] (for unitary
groups of signature (n,n) and pullbacks to products of definite unitary groups), and [Pan05]
(for Siegel modular forms). Unlike in those earlier cases, though, the lack of q-expansions
in the case of unitary groups not of signature (n,n) necessitates modifying the approach of
those papers. Instead, we take expansions at ordinary CM points (Serre-Tate expansions)
and apply the Serre-Tate Expansion Principle [CEF+16, Theorem 5.14, Proposition 5.5,
Corollary 5.16]. Also, unlike earlier constructions, by employing Hida’s density theorem,
we extend the action of the operators to p-adic (not necessarily classical) weights.

Our ability to establish congruences among differential operators depends on appropriately
choosing the p-adic integral models for the algebraic representations associated with dom-
inant weights. In particular, our models are slightly different from those considered in the
work of Hida [Hid04], and our construction relies on the theory of Schur functors and pro-
jectors. The congruences follow from a careful analysis of the action of Schur functions (and
especially the generalized Young symmetrizer) and rely on the description in Main Result
2.

In Section 6, we also extend Main Results 1 and 2 to the case of pullbacks from a Shimura
variety to a subvariety. While Main Results 1 and 2 focus on the description of the opera-
tors on Serre-Tate expansions, the precision with which we work out details for Serre-Tate
expansions allows us also to transfer some of our results to devise a novel lifting argument
concerning only q-expansions that produces explicit families of automorphic forms, sum-
marized in Main Result 3. (The key idea is to apply a lifting argument, together with the
description of the action of the differential operators and pullbacks developed in Section 6
and in the proof of Proposition 5.2.4 to the Eisenstein series constructed in [Eis15, Eis14].)
These families feed into the machinery of p-adic L-functions in [EHLS16].

Remark 1.2.1. Although there are no q-expansions in the setting of unitary groups of arbi-
trary signature, these operators can naturally be viewed as the incarnation of Ramanujan’s
operator q ddq in this setting. The families that can be obtained by applying such operators
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are broader than what can be obtained by tensoring with powers of a lift of the Hasse
invariant, since our construction allows, for example, non-parallel weights.

Remark 1.2.2. It would also be beneficial to have a p-adic Fourier-Jacobi expansion principle
for unitary groups of arbitrary signature (which appears to be possible to state and prove -
via a lengthy, technical argument - building on recent arithmetic geometric developments,
e.g. [Lan13]). This would provide an alternate but ultimately more direct route (modulo
the necessity of first proving such an expansion principle) to the construction of families.
On the other hand, we also expect our work with the Serre-Tate expansions themselves to
be useful in other applications, e.g. an extension of Burungale and Hida’s work in [BH14].

1.3. Structure of the paper. Section 2 introduces our setup and recalls key facts about
unitary Shimura varieties, the Igusa tower, and p-adic and classical automorphic forms
(following [CEF+16, Sections 2 and 3]). It also provides necessary results on t-expansions
from [CEF+16] and an overview of Schur functors, on which our computations rely crucially.

Sections 3 and 4 give global and local descriptions, respectively, of the differential operators.
In particular, Section 3 discusses differential operators of integral (classical) weights that
act on the automorphic forms introduced in Section 2. Using Schur functors, we build
these operators from the Gauss-Manin connection and the Kodaira-Spencer morphism. In
Section 4, via a careful computation of the action of the Young symmetrizer, we describe
the action of the differential operators on Serre-Tate coordinates.

In Section 5, we use the description of the action of the differential operators on t-expansions,
and Hida’s density theorem, to prove the operators extend to the whole space of p-adic au-
tomorphic forms. We then establish congruences among operators of congruent weights,
which we interpolate to differential operators of p-adic weights on the space of p-adic auto-
morphic forms, leading to Theorem 5.2.6 and Corollary 5.2.8 (summarized in Main Result
1 above) and Theorem 5.1.3 and Corollary 5.2.10 (summarized in Main Result 2 above).

Section 6 describes the behavior of the differential operators with respect to restriction
from one unitary group to a product of two smaller unitary groups. Restrictions of p-adic
automorphic forms play a crucial role in the construction of p-adic L-functions in [EHLS16].

Section 7 constructs p-adic families of automorphic forms on unitary groups of arbitrary
signature, by applying a novel lifting strategy and our p-adic differential operators to restric-
tions of p-adic families of Eisenstein series from [Eis15, Eis14]. Theorem 7.2.3 (summarized
in Main Result 3 above) produces a p-adic measure taking values in the space of p-adic
automorphic forms of arbitrary signature related to the given family of Eisenstein series.
This result is in turn used in the construction of p-adic L-functions in [EHLS16].

1.4. Notation and conventions. Fix a totally real number field K+ of degree r and
an imaginary quadratic extension K0 of Q. Define K to be the compositum of K+ and
K0. Additionally, we will fix a positive integer n, and a rational prime p > n that splits
completely in K/Q. If K is an imaginary quadratic field, we put further restrictions when
n = 2 (see Remark 2.3.2).

The above assumptions ensure the following:

● Our unitary group at p is a product of (restrictions of scalars of) general linear
groups

● The Shimura varieties of prime-to-p level we consider have smooth integral models
(with moduli interpretations) after localizing at p
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● Sections of automorphic bundles on open Shimura varieties coincide with those on
their compactifications, by Koecher’s principle.

● The ordinary locus of the reduction modulo p is not empty
● We can p-adically interpolate our differential operators (see Proposition 5.2.4 and

Theorem 5.2.6).

We now discuss some notation used throughout the paper. For any field L, we denote
the ring of integers in L by OL. We use A to denote the adeles over Q, and we write A∞

(resp. A∞,p) to denote the adeles away from the archimedean places (resp. the archimedean
places and p). For our CM field K, let c denote complex conjugation, i.e. the generator

of Gal(K/K+). We denote by Σ the set of embeddings of K+ into Qp, and we denote by

ΣK the set of Qp-embeddings of K. Additionally, fix a CM type of K, i.e. for each τ ∈ Σ
choose exactly one K-embedding τ̃ extending τ , and abusing notation, identify the set of τ̃
with Σ. Under this identification, note that Σ∪Σc = ΣK . Additionally, fix an isomorphism

ıp ∶ C
∼→ Qp, and let Σ∞ = ı−1

p Σ and ΣK,∞ = ı−1
p ΣK . We will often identify Σ∞ with Σ and

ΣK,∞ with ΣK via the above isomorphism without further mentioning.

The reflex field associated to our Shimura varieties will typically be denoted by E (with
subscripts to denote different reflex fields in Section 6). Additionally, define the primes
above p using the decomposition of pOK = ∏r

i=1 PiP
c
i where pi =PiP

c
i are the primes above

p in OK+ .

We denote the dual of an abelian scheme A by A∨. We also denote the dual of a module
M by M∨. Given schemes S and T over a scheme U , we denote the scheme S ×U T by
ST . When no confusion is likely to arise, we sometimes use the same notation for a sheaf
of modules and a corresponding module (e.g. obtained by localizing at a point).

For any ring R, we denote by Mn×n(R) the space of n × n matrices with entries in R, and
we denote by Hermn(K) the space of Hermitian matrices inside Mn×n(K).

2. Background and setup

In this section, we recall facts about Shimura varieties, automorphic forms, and p-adic
automorphic forms that will play a key role in the rest of the paper. Most of this material
is covered in detail in [CEF+16, Sections 2.1 and 2.2]. Like in [CEF+16], the definitions of
the PEL data and moduli problems follow [Kot92, Sections 4 and 5] and [Lan13, Sections
1.2 and 1.4 ].

2.1. Unitary groups and PEL data. By a PEL datum, we mean a tuple (K,c,L, ⟨, ⟩, h)
consisting of

● the CM field K equipped with the involution c introduced in Section 1.4,
● an OK-lattice L, i.e. a finitely generated free Z-module with an action of OK ,
● a non-degenerate Hermitian pairing ⟨⋅, ⋅⟩ ∶ L×L→ Z satisfying ⟨k ⋅v1, v2⟩ = ⟨v1, k

c ⋅v2⟩
for all v1, v2 ∈ L and k ∈ OK ,

● an R-algebra endomorphism

h ∶ C→ EndOK⊗ZR(L⊗Z R)
such that (v1, v2) ↦ ⟨v1, h(i) ⋅ v2⟩ is symmetric and positive definite and such that
⟨h(z)v1, v2⟩ = ⟨v1, h(z)v2⟩.

Furthermore, we require:

● Lp ∶= L⊗Z Zp is self-dual under the alternating Hermitian pairing ⟨⋅, ⋅⟩p on L⊗Z Qp.
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Given a PEL datum (K,c,L, ⟨, ⟩, h), we associate algebraic groups GU = GU(L, ⟨, ⟩), defined
over Z, whose R-points (for any Z-algebra R) are given by

GU(R) ∶= {(g, ν) ∈ EndOK⊗ZR(L⊗Z R) ×R× ∣ ⟨g ⋅ v1, g ⋅ v2⟩ = ν⟨v1, v2⟩}
U(R) ∶= {g ∈ EndOK⊗ZR(L⊗Z R) ∣ ⟨g ⋅ v1, g ⋅ v2⟩ = ⟨v1, v2⟩}

Note that ν is called the similitude factor. Additionally, we can define the R-vector space
equipped with an action of K ∶

V ∶= L⊗Z R.

The endomorphism hC = h×RC gives rise to a decomposition VC ∶= V ⊗RC = V1⊕V2 (where
h(z) × 1 acts by z on V1 and by z̄ on V2). The reflex field E of (V, ⟨, ⟩, h) is the field of
definition of the GU(C)-conjugacy class of V1.

We have further decompositions V1 = ⊕τ∈ΣKV1,τ and V2 = ⊕τ∈ΣKV2,τ induced from the
decomposition of K ⊗Q C = ⊕τ∈ΣKC, where only the τ -th C acts nontrivially on Vτ = V1,τ ⊕
V2,τ , and it acts via the standard action on V1,τ and via conjugation on V2,τ . The signature
of (V, ⟨, ⟩, h) is the tuple of pairs (a+τ , a−τ)τ∈ΣK where a+τ = dimC V1,τ and a−τ = dimC V2,τ

for all τ ∈ ΣK . The sum a+τ + a−τ is independent of τ ∈ ΣK , and so we define

n ∶= a+τ + a−τ .
(Note that a+τc = a−τ .) Finally, we define an algebraic group

H ∶= ∏
τ∈Σ

GLa+τ ×GLa−τ

over Z. Note that H(C) can be identified with the Levi subgroup of U(C) that preserves
the decomposition VC = V1 ⊕ V2. Additionally, we will denote the diagonal maximal torus
of H by T , and the unipotent radical of the Borel subgroup of upper triangular matrixes
by N .

2.2. PEL moduli problem and Shimura varieties. We now introduce the Shimura
varieties associated to a given PEL datum (K,c,L, ⟨, ⟩, h). We will restrict our attention to
the integral models (defined over OE ⊗ Z(p)) of such PEL-type unitary Shimura varieties
that have prime-to-p level structure and good reduction at p.

Let U ⊂ GU(A∞) be an open compact subgroup. We assume U = UpUp is neat (as defined
in [Lan13, Definition 1.4.1.8]) and that Up ⊂ GU(Qp) is hyperspecial. Consider the mod-
uli problem (S, s) ↦ {(A, i, λ,α) / ∼} which assigns to every connected, locally noetherian
scheme S over OE ⊗ Z(p) together with a geometric point s of S, the set of equivalence
classes of tuples (A, i, λ,α), where:

● A is an abelian variety over S of dimension g ∶= nr = n[K+ ∶ Q],
● i ∶ OK,(p) ↪ (End(A)) ⊗Z Z(p) is an embedding of Z(p)-algebras,
● λ ∶ A→ A∨ is a prime-to-p polarization satisfying λ ○ i(kc) = i(k)∨ ○λ for all k ∈ OK ,
● α is a π1(S, s)-invariant Up-orbit of K ⊗Q Ap,∞-equivariant isomorphisms

L⊗Z Ap,∞ ∼→ V pA,

which takes the Hermitian pairing ⟨⋅, ⋅⟩ on L to an (Ap,∞)×-multiple of the λ-Weil
pairing (⋅, ⋅)λ on V pA (the Tate module away from p).

In addition, the tuple (A, i, λ,α) must satisfy Kottwitz’s determinant condition:

detC(OK ∣V1) = detOS(OK ∣LieA).
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Two tuples (A, i, λ,α) ∼ (A′, i′, λ′, α′) are equivalent if there exists a prime-to-p isogeny
A→ A′ taking i to i′, λ to a prime-to-p rational multiple of λ′ and α to α′.

This moduli problem is representable by a smooth, quasi-projective schemeMU over OE ⊗
Z(p). (See [Lan13, Corollary 7.2.3.10].) If we allow Up to vary, the inverse system consisting
of MU has a natural action of GU(A∞,p) (i.e., g ∈ GU(A∞,p) acts by precomposing the
level structure α with it). For any scheme S over Spec(OE ⊗Z(p)), we put

MU ,S ∶= MU ×OE,(p) S.

When S = Spec(R) for a ring R, we will often write MU ,R instead of MU ,Spec(R).

We denote by Man
U the complex manifold of C-valued points of MU and by MU (C∞)

the underlying C∞-manifold. Given a sheaf F on MU , we denote by F (C∞) the sheaf
on MU (C∞) obtained by tensoring F with the C∞-structural sheaf on MU (C∞). In the
sequel, we fix the level U and suppress it from the notation.

2.3. Automorphic forms. Let W ∶= W (Fp) denote the ring of Witt vectors; note that

Frac(W) contains all embeddings of K ↪ Qp, due to our assumptions on p. Let π ∶ Auniv =
(A, i, λ,α)univ →MW denote the universal abelian scheme. Define ωAuniv/M

= π∗ΩAuniv/M

as the pushforward along the structure map of the sheaf of relative differentials. It is a
locally free sheaf of rank nr, equipped with the structure of an OK ⊗W-module induced by
the action of OK on Auniv. Hence, we obtain the decomposition:

ωAuniv/M
= ⊕
τ∈Σ

(ω+Auniv/M,τ ⊕ ω
−
Auniv/M,τ)(2.3.0.1)

where ω±Auniv/M,τ has rank a±τ and an element x ∈ OK acts on ω+Auniv/M,τ (resp. ω−Auniv/M,τ )

via τ(x) (resp. τ c(x)). We can then define

E = EU ∶= ⊕
τ∈Σ

IsomOM ((OM)a+τ , ω+Auniv/M,τ) ⊕ ⊕
τ∈Σ

IsomOM ((OM)a−τ , ω−Auniv/M,τ) .

Note there is a (left) action ofH on E arising from the action of GLa±τ on Isom ((OM)a±τ , ω±Auniv/M,τ)
for all K-embeddings τ ∈ Σ.

Consider an algebraic representation ρ of H (over W) into a finite free W-module Mρ.
For any such ρ, we define the sheaf Eρ = EU ,ρ ∶= E ×ρ Mρ, i.e. for each open immersion

SpecR ↪M, set Eρ(R) ∶= (E(R) ×Mρ ⊗W R) / (`,m) ∼ (g`, ρ(tg−1)m).

An automorphic form of weight ρ defined over a W-algebra R is a global section of the sheaf
Eρ on MR.

Remark 2.3.1. Usually, automorphic forms are defined as sections on a compactification of
MR′ . By Koecher’s principle the two definitions are equivalent, except when Σ consists
only of one place τ and (a+τ , a−τ) = (1,1). For the remainder of the paper, we exclude this
case.

2.4. Standard representation, highest weights, and Schur functors. We briefly
recall some useful facts about H from the theory of algebraic (rational) representations of
linear algebraic groups.
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2.4.1. Highest weights of an algebraic representation of H. The irreducible algebraic rep-
resentations of H = ∏τ∈Σ GLa+τ ×GLa−τ over any algebraically closed field of characteristic
0 (up to isomorphism) are in one-to-one correspondence with the dominant weights of its
diagonal torus T = ∏τ∈Σ Ta+τ × Ta−τ .

For 1 ≤ i ≤ n, let ετi in X(T ) ∶= HomQp
(T,Gm)= HomZp(T,Gm) be the character defined by

ετi ∶ T (Qp) = ∏
σ∈Σ

Ta+σ(Qp) × Ta−σ(Qp) → Gm(Qp) ετi (diag(γσ1,1,⋯, γσn,n)σ∈Σ) = γτi,i.

These characters form a basis of the free Z-module X(T ). We choose ∆ = {ατi ∶= ετi −
ετi+1}τ∈Σ,1≤i<n,i≠a+τ as a basis for the root system of H. The set of all dominant weights of
T with respect to ∆ is X(T )+ = {κ ∈ X(T ) ∣ ⟨κ, α̌⟩ ≥ 0∀α ∈ ∆}. Using the basis {ετi ∶ τ ∈
Σ,1 ≤ i ≤ n} of X(T ), we identify:

X(T )+ ≅ {(κτ1 ,⋯, κτn)τ∈Σ ∈ ∏
τ∈Σ

Zn ∶ κτi ≥ κτi+1 ∀i ≠ a+τ},

where κ = (κτ)τ∈Σ and κτ = ∏i(ετi )κ
τ
i . For each dominant weight κ, ρκ ∶HQp

→Mρ denotes

an irreducible algebraic representation of highest weight κ. (See, for example, [Jan03,
Part II. Chapter 2].)

2.4.2. Schur functors. We briefly recall the construction of Schur functors, adapted to our
setting. (We refer to [FH91, Sections 4.1 and 15.3] for the usual definitions).

For κ a positive dominant weight, i.e. κ = (κτ1 , . . . , κτn)τ∈Σ ∈ X(T )+ satisfying κτi ≥ κτi+1 ≥ 0
for all τ ∈ Σ and i ≠ a+τ , we write dτ+κ = ∣κτ+∣ ∶= ∑a+τi=1 κ

τ
i , dτ−κ = ∣κτ−∣ ∶= ∑ni=a+τ+1 κ

τ
i , and

regard κτ+ = (κτ1 , . . . , κτa+τ ) and κτ− = (κτa+τ , . . . , κ
τ
n) as a partition of dτ±κ . When there is an

integer k such that κτi = k for all i and τ , we denote k ∶= κ.

To each κτ±, there is an associated Young symmetrizer cτ±κ ∈ Z[Sdτ±κ ] in the group algebra
of the symmetric group Sdτ±κ on dτ±κ symbols. If V is any module over a ring R, we let

Sdτ±κ act on the dτ±κ -th tensor power V ⊗dτ±κ on the right by permuting factors. This action

extends to give a right-Z[Sdτ±κ ]-module structure on V ⊗dτ±κ .

We define the κτ±-Schur functor on the category of R-modules

Sκτ±(V ) ∶= V ⊗dτ±κ ⋅ cτ±κ ⊂ V ⊗dτ±κ .

We now assume R is a Zp-algebra or an algebraically closed field of characteristic 0. Then
for each κτ±, Sκτ±(Ra±τ ) is an irreducible representation of GLa±τ with highest weight κτ±

([FH91, Proposition 15.15 and Proposition 15.47]).

Let V = ⊕τ∈Σ (V +,τ ⊕ V −,τ) be an R-module, together with such a decomposition. We
define the κ-Schur functor, for κ a positive dominant weight, by

Sκ(V ) ∶= ⊠τ∈Σ (Sκτ+(V +,τ) ⊠ Sκτ−(V −,τ)) = (⊠τ∈Σ ((V +,τ)⊗dτ+κ ⊠ (V −,τ)⊗dτ−κ )) cκ ⊂ V ⊗dκ ,

where dκ = ∑
τ∈Σ

(dτ+κ + dτ−κ ) and cκ = ⊗τ∈Σ (cτ+κ ⊗ cτ−κ ). We call cκ the generalized Young

symmetrizer.

We now consider the case of non-positive dominant weight. If κτ± is a dominant weight,
but κτa+τ < 0 we define

Sκτ±(V ) ∶= Sκτ±−(κτa+τ ,⋯,κτa+τ )(V ) ⊗ det(V )κτa+τ .

Similarly, if κτ± is dominant, but κτn < 0, we define Sκτ±(V ) ∶= Sκτ±−(κτn,⋯,κτn)(V )⊗det(V )κτn .
This allows us to extend the definition of the Schur functor Sκ to all dominant weights κ.
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Throughout this paper, for each dominant weight κ, we denote the irreducible representation
Sκ (⊕τ∈Σ (Za+τp ⊕Za−τp )) of HZp of highest weight κ by ρκ. In the following, we sometimes
write (⋅)ρκ for Sκ(⋅), and also EU ,κ (resp. Eκ) in place of EU ,ρκ (resp. Eρκ).

Remark 2.4.1. In [CEF+16] (see [CEF+16, Remark 3.5]) the symbol ρκ is used for the

representation ρ̃κ ∶= Ind
HZp
B− (−κ) of HZp of highest weight κ, where B− is the Borel subgroup

containing T corresponding to lower triangular matrices in HZp . For each dominant weight
κ, the two representations ρκ and ρ̃κ are isomorphic over Qp, and by Frobenius reciprocity

HomHZp (ρκ, ρ̃κ) = HomHZp (ρκ, Ind
HZp
B− (−κ)) ≃ HomB− (ρκ, κ) (≃ Zp).

The isomorphism between the left and right hand side is given by composition with evκ,

where evκ is defined by evκ(f) = f(1) for f ∈ Ind
HZp
B− (−κ). In particular, a choice {`κcan} of

a Zp-basis of HomB− (ρκ, κ) yields an injection iκ from ρκ into ρ̃κ such that `κcan = evκ ○iκ.
(Note that evκ is denoted `can in [CEF+16].)

2.4.3. Projection onto highest weight representations. We will use the material from this
section to construct and study differential operators on p-adic automorphic forms. For
comparison, we note that a discussion of differential operators on C∞ automorphic forms
and the description of highest weights in that case is in [Shi00, Section 12.1] and [Shi84]; a
related (but briefer) description also is available in [Shi97, Section 23]. In this section, we
denote the standard representation ⊕τ∈Σ (Za+τp ⊕Za−τp ) of HZp by V .

Let B = ∪τ{bτ,1,⋯, bτ,n} be the standard basis of V , and B∨ = ∪τ{b∨τ,1,⋯, b∨τ,n} be the
corresponding dual basis. For each positive dominant weight κ, we write

πκ ∶ V ⊗dκ ↠ ρκ

for the surjection obtained from projecting onto summands and applying the generalized
Young symmetrizer.

Definition 2.4.2. For each positive dominant weight κ, we define `κcan to be the Zp-basis
of HomB− (ρκ, κ) such that

(2.4.3.1) ˜̀κ
can ∶= `κcan ○ πκ =∏

τ∈Σ

n

∏
i=1

(κτi !)−1 ⋅ ⊗
τ∈Σ

n

⊗
i=1

(b∨τ,i)⊗κ
τ
i ⋅ cκ.

We have chosen the above normalization so that Remark 5.2.1 holds.

Definition 2.4.3. A weight κ = (κτ1 ,⋯, κτn)τ∈Σ is called sum-symmetric if κ is positive
dominant and dτ+κ = dτ−κ for all τ ∈ Σ, where dτ+κ = ∑a+τi=1 κ

τ
i and dτ−κ = ∑ni=a+τ+1 κ

τ
i . A

representation ρ is called sum-symmetric if it is isomorphic to ρκ for some sum-symmetric
weight κ. In this case we call eκ = ∑τ∈Σ dτ+κ = dκ/2 the depth of κ or of the representation
ρκ.

Definition 2.4.4. A weight κ is called symmetric if κ is sum-symmetric and for all τ ∈ Σ
we have

κτi = κτa+τ+i for all 1 ≤ i ≤ min(a+τ , a−τ).
Remark 2.4.5. If κ is sum-symmetric of depth eκ, then, by the Schur functor construction,
the representation ρκ of HZp of highest weight κ is a quotient of (⊕τ∈Σ (Za+τp ⊗Za−τp ))⊗eκ .

Lemma 2.4.6. Let κ be a positive dominant weight, let κ′ be a sum-symmetric weight.
Then the projection πκκ′ ∶ V ⊗dκκ′ ↠ ρκκ′ factors through the map

πκ ⊗ πκ′ ∶ V ⊗dκκ′ ≃ V ⊗dκ ⊗ V ⊗dκ′ ↠ ρκ ⊗ ρκ′ .
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Moreover, if we denote the resulting projection ρκ ⊗ ρκ′ ↠ ρκκ′ by πκ,κ′, then

(2.4.3.2) `κcan ⊗ `κ
′

can = `κκ
′

can ○ πκ,κ′ ,
and

(2.4.3.3) ˜̀κ
can ⊗ ˜̀κ′

can = ˜̀κκ′
can.

Proof. Recall the injection iκ ∶ ρκ → ρ̃κ = Ind
HZp
B− (−κ) defined in Remark 2.4.1, and note

that (iκ)Qp is an isomorphism. Let π̃κ,κ′ ∶ ρ̃κ ⊗ ρ̃κ′ → ρ̃κκ′ be the projection obtained by
f ⊗ f ′ ↦ ff ′, and define πκ,κ′ ∶ ρκ ⊗ ρκ′ → ρκκ′ to be the composition

(iκκ′)−1
Qp ○ π̃κ,κ′ ○ ((iκ)Qp ⊗ (iκ′)Qp).

Then we obtain after base change to Qp that

`κcan ⊗ `κ
′

can = evκ ○iκ ⊗ evκ′ ○iκ′ = evκκ′ ○π̃κ,κ′ ○ (iκ ⊗ iκ′) = `κκ
′

can ○ πκ,κ′ .
Using Equation (2.4.3.1) and the definition of the action of cκ, we deduce that

`κκ
′

can ○ πκ,κ′ ○ (πκ ⊗ πκ′) = `can ○ πκκ′ .
Thus by Frobenius reciprocity πκ,κ′ ○ (πκ ⊗ πκ′) = πκκ′ , and it only remains to check that
πκ,κ′ is defined over Zp. However, this follows from πκκ′ being defined over Zp and the
surjectivity of πκ ⊗ πκ′ . �

2.5. The Igusa tower over the ordinary locus. In this section, we introduce the Igusa
tower as a tower of finite étale Galois covers of the ordinary locus of a Shimura variety.
This construction is due to Hida in [Hid04, Section 8.1] (see also [CEF+16, Section 4.1]).
We recall that our Shimura varieties have hyperspecial level at p and neat level away from
p (and that we suppressed the level from the notation).

We fix a place P of E above p and denote the residue field of OEP ⊂ EP by k. Abusing

notation, we will still denote the base change of M to OEP by M. We define Mord
over k

to be the ordinary locus of M ∶=M×OEP k, and Mord over OEP to be the complement in

M of the zero set of a lift of (some power of) the Hasse invariant. Since we assume p splits
completely in K (which implies that p splits in the reflex field E), Mord is nonempty, in
fact it is open and dense. We fix a connected component Sord of Mord

W ∶=Mord ×OEP W.

Equivalently, Sord is the ordinary locus of a fixed connected component S of MW.

LetAord ∶= Auniv /Sord be the universal (ordinary) abelian variety over Sord. Pick a W-point x

of Sord, and denote by x̄ the underlying Fp-point. We can identify the Zp-lattice Lp (defined

in Section 2.1) with the p-adic Tate module of Aord
x [p∞]. Choose such an identification

Lp ≃ Tp(Aord
x [p∞]), compatible with the OK-action and identifying the Hermitian pairing

with the Weil pairing. Then, the kernel of the reduction map

Tp(Aord
x [p∞]) → Tp(Aord

x̄ [p∞]ét)
determines an OK-submodule L ⊂ Lp. Using the self-duality of Lp under the Hermitian
pairing ⟨⋅, ⋅⟩ and its compatibility with the λ-Weil-pairing (⋅, ⋅)λ, we can identify the dual
L∨ of L with the orthogonal complement of L inside Lp. Note that L decomposes as

L = ⊕τ∈Σ(L+τ ⊕L−τ ).
In the sequel, we write

(2.5.0.4) L2 ∶= ⊕τ∈ΣL+τ ⊗L−τ .
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We now introduce the Igusa tower over the p-adic completion of Sord. For each m ∈ Z≥1, we
write Sord

m ∶= Sord ×W W/pmW. For each n,m ∈ Z≥1, consider the functor

Ign,m ∶ {Schemes/Sord
m } → {Sets}

that takes an Sord
m -scheme S to the set of OK-linear closed immersions

ιn ∶ L ⊗Zp µpn ↪ AS[pn],

where AS ∶= Aord ×Sord S. This functor is represented by an Sord
m -scheme, which by abuse

of notation we also denote by Ign,m. For each n ≥ 1, Ign,m is a finite étale and Galois cover

of Sord
m , whose Galois group is the group of OK-linear automorphisms of L/pnL.

For each n ≥ 1, we define the formal scheme Ign ∶= limÐ→m Ign,m. Equivalently, we define Ign
as the formal completion along the special fiber of the scheme representing the functor that
takes a Sord-schemes S to the set of OK-linear closed immersions ιn ∶ L ⊗Z µpn ↪ AS[pn].
Finally, we define the infinite Igusa tower Ig as Ig ∶= lim←Ðn Ign. Recall that inverse limit

of projective system of formal schemes, with affine transition maps, exists in the category
of formal schemes (see [Far08, Proposition D.4.1].) Thus, Ig exists as formal scheme, and
is a pro-étale cover of the formal completion of Sord along its special fiber, with Galois
group the group of OK-linear automorphisms of L, which we identify with H(Zp). For

any point x0 of the formal completion of Sord along its special fiber (e.g., x0 ∈ Sord(W) or

Sord(Fp)), the choice of a point x of Ig lying above x0 is equivalent to the choice of an Igusa
structure of infinite level on Ax0 , i.e. of an OK-linear closed immersion of Barsotti-Tate
groups ιx ∶ L ⊗Zp µp∞ ↪ Ax0[p∞]. In the following, we write

ι ∶ L ⊗Zp µp∞ ↪ Aord[p∞]

for the universal Igusa structure of infinite level on Aord over Ig.

2.6. p-adic automorphic forms. Following Hida [Hid04, Section 8.1], we define p-adic
automorphic forms as global functions on the Igusa tower (see also [CEF+16, Section 4.2]).
For all n,m ∈ Z≥1, let

Vn,m ∶=H0(Ign,m,OIgn,m),
we write V∞,m ∶= limÐ→n Vn,m, and V∞,∞ ∶= lim←Ðm V∞,m.

Note that the space V∞,∞ is endowed with a left action of H(Zp), f ↦ g ⋅ f , induced by the
natural right action of g ∈H(Zp) on the Igusa tower.

We call V N ∶= V N(Zp)
∞,∞ the space of p-adic automorphic forms.

The above definition is motivated by the existence of an embedding of the space of p-adic
automorphic forms, regarded as global sections of automorphic vector bundles on Sord, into
V N . We briefly recall the construction ([Hid04, Section 8.1.2]) adapted to our setting.

Fix n ≥ m ≥ 0, and κ any dominant weight. Let V N
n,m[κ] denote the κ-eigenspace of the

action of torus on V
N(Zp)
n,m . We define a map

Ψκ
n,m ∶H0 (Sord

m ,Eκ) → V N
n,m[κ]

as follows. We regard each f ∈ H0 (Sord
m ,Eκ) as a function (A, j) ↦ f (A, j) ∈ ρκ(Wm) on

pairs (A, j), where A = Aord
x0

is an abelian variety associated to a point x0 of Sord
m , and j is

a the trivialization of ωA = ωAord/Sord
m ,x0

. Using the canonical isomorphism

ωAord/Sord
m

≅ Aord[pn]ét ⊗OSord
m
,
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to each Igusa structure ι on A we associate a trivialization jι of ωA. Finally, we define

Ψn,m(f) ∈ V N
n,m[κ] as the function (A, ι) ↦ `κcan(f(A, jι)). As n,m vary, with n ≥ m, we

obtain a map

Ψκ ∶H0 (Sord,Eκ) → V N [κ],(2.6.0.5)

where V N [κ] denotes the κ-eigenspace of the action of the torus on V N .

We define

Ψ ∶ ⊕
κ∈X(T )+

H0(Sord,Eκ) → V N(2.6.0.6)

to be the linear map whose restriction to H0(Sord,Eκ) is Ψκ.

Theorem 2.6.1. [Hid04, Prop. 8.2 & Thm. 8.3] The map Ψκ is injective, and after inverting
p, the image of Ψ

Ψ

⎛
⎜⎜
⎝

⊕
κ∈X(T )+,
κ positive

H0(Sord,Eκ)
⎞
⎟⎟
⎠
[1

p
] ∩ V N

is p-adically dense in V N .

Proof. Proposition 8.2 and Theorem 8.3 in [Hid04] are conditional on the assumption (given
in [Hid04, Section 8.1.4]) that the following equality holds for all κ ∈X(T )+ and all integers
m ≥ 1 ∶

H0(Sord,Eκ)/pmH0(Sord,Eκ) =H0(Sord
m ,Eκ).

Here, we prove that such equations hold in our settings.

Although they have not been introduced in this paper, Lan has constructed partial toroidal

and minimal compactifications Sordtor
and Sordmin

of Sord (see [Lan14, Theorems 5.2.1.1 &
6.2.1.1]) as well as a canonical extension Ecan

κ of Eκ to the partial toroidal compactifications
(see [Lan14, Definition 8.3.3.1]). Additionally, by [Lan14, Proposition 6.3.2.4], for every

m ≥ 1, we have that Sordmin ×W W/pmW is affine. Because the pushforwards (under a

proper map by [Lan14, Proposition 5.2.3.18]) of Ecan
κ to Sordmin

are quasi-coherent, we can
conclude that

H0 (Sordtor
,Ecan
κ ) /pmH0 (Sordtor

,Ecan
κ ) =H0 (Sordtor ×W W/pmW,Ecan

κ ) .

We could then conclude the theorem if we knew that Koecher’s Principle applied. By [Lan16,
Remark 10.2], the analogue of [Lan16, Theorem 2.3] holds for the partial compactifications
of ordinary loci and so we deduce

H0(Sordtor
,Ecan
κ ) =H0(Sord,Eκ).

�

The above statement implies that the p-adic closure of the space of integral weight p-adic
automorphic forms is the space of all p-adic automorphic forms.

2.7. Serre-Tate theory for unitary Shimura varieties. We briefly recall the main
results in [CEF+16].
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2.7.1. Local coordinates at ordinary points. For any x0 ∈ Sord(W), we write x0 ∈ Sord(Fp)
for its reduction modulo p, and denote by Sord∧

x0
the formal completion of Sord × Fp at x0.

We also write Sord∧
x0

= Spf(RSord,x0
). The ring RSord,x0

is a complete local ring over W,

with residue field Fp, and we denote by mx0 its maximal ideal.

Let A0 = Aord
x0

denote the abelian variety over Fp attached to the point x̄0, and write TpA0

for the physical Tate module of A0. It is a free OK ⊗Z Zp-module, which decomposes as

TpA0 = ⊕ri=1TPiA0⊕⊕ri=1TPciA0,

where the decomposition is induced from the identification OK ⊗Zp ≅ ⊕r
i=1 (OKPi

⊕OKPc
i
).

Theorem 2.7.1. ([CEF+16, Proposition 5.8]) Let x0 ∈ Sord(W). There exists a canonical
isomorphism of formal schemes

Sord∧
x̄0

∼→
r

⊕
i=1

HomZp(TPiA0 ⊗ TPciA0, Ĝm), x↦ qx.

In the following, we identify the space ⊕r
i=1 HomZp(TPiA0 ⊗ TPciA0, Ĝm) with the subspace

of HomZp(TpA0⊗TpA0, Ĝm) consisting of all symmetric (OK⊗ZZp, c)-hermitian forms, and
write

q = qA/Sord∧
x̄0
∶ TpA0 ⊗ TpA0 → Ĝm(2.7.1.1)

for the universal symmetric (OK ⊗Z Zp, c)-hermitian form over Sord∧
x̄0

. This implies that q
satisfies q(Q,P ) = q(P,Q) and q(kQ,P ) = q(Q,kcP ), for all P,Q ∈ TpA0 and k ∈ OK . In
particular, for any P ∈ TPiA0, q(Q,P ) = 0 unless Q ∈ TPciA0.

For any point x ∈ Ig(W) above x0, we write x̄ for its reduction modulo p, and ιx̄ for the Igusa
structure of infinite level on A0 attached to the point x̄. The map ιx̄ ∶ L ⊗ µp∞ ↪ A0[p∞]
induces an isomorphism of OK ⊗Z Zp-modules

(2.7.1.2) Tp(ι∨x̄) ∶ TpA0 → L∨.

We denote by

tx ∶
r

⊕
i=1

TPiA0 ⊗ TPciA0
∼→ (L2)∨,

the Zp-linear isomorphism induced by the restriction of Tp(ιx̄∨)⊗2.

Proposition 2.7.2. ([CEF+16, Proposition 5.10]) Let x0 ∈ Sord(W). Each point x ∈ Ig(W)
above x0 defines an isomorphism of formal schemes βx ∶ Sord∧

x̄0

∼→ Ĝm ⊗L2.

Remark 2.7.3. Let t denote the canonical formal parameter on Ĝm, we write

β∗x ∶W[[t]] ⊗ (L2)∨ ∼→RSord,x0

for the isomorphism of local rings induced by βx, where W[[t]]⊗(L2)∨ denotes the complete

ring corresponding to the formal scheme Ĝm ⊗L2. A choice of a Zp-basis E of (L2)∨ yields
the isomorphism

β∗x,E ∶W[[tl∣l ∈ E]] ∼→RSord,x0
,

which satisfies the equality β∗x(tl) = q(t−1
x (l)) − 1 ∈ mx̄0 , for all l ∈ E.
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2.7.2. The t-expansion principle. Let x ∈ Ig(W). Recall that since Ig is a pro-finite étale
cover of Sord, the natural projection j ∶ Ig → Sord induces an isomorphism between the

formal completion of Ig at x and Sord∧
x̄0

, for x0 = j(x) ∈ Sord(W). In particular, the
localization map at x induces a map locx ∶ V∞,∞ →RSord,x0

.

For any f ∈ V N , the t-expansion (or Serre-Tate expansion) of f is defined as

fx(t) ∶= β∗x
−1(locx(f)) ∈W [[t]] ⊗ (L2)∨.

Recall that, for all g ∈ H(Zp), we have fxg(t) = (id⊗ g−1)(g ⋅ f)x(t) ([CEF+16, Proposition
5.13]).

Theorem 2.7.4. ([CEF+16, Theorem 5.14, Proposition 5.5, Corollary 5.16])

(1) For any weight κ, and f ∈ V N [κ]: fx(t) = 0 if and only if f = 0.
(2) For any f ∈ V N , (g ⋅ f)x(t) = 0 (equiv. fxg(t) = 0) for all g ∈ T (Zp) if and only if

f = 0.
(3) Let m ∈ N. Let f, f ′ ∈ V N be two p-adic automorphic forms of weight κ and κ′,

respectively. Then f ≡ f ′ modpm if and only if for all g ∈ T (Zp)
κ(g)fx(t) ≡ κ′(g)f ′x(t)modpm.

3. Differential operators

In this section, we introduce differential operators similar to the ones in [Eis09, Eis12].
Unlike [Eis09, Eis12] (which only explicitly handles unitary groups whose signature is of
the form (a+, a−) with a+ = a− at each archimedean place), we place no restrictions on the
signature of the unitary groups with which we work.

3.1. The Gauss-Manin connection. We briefly review key features of the Gauss-Manin
connection, which was first introduced by Y. Manin in [Man58] and later extended and
studied by N. Katz and T. Oda [Kat70, KO68]. A detailed summary of the Gauss-Manin
connection also appears in [Eis12, Section 3.1]. Below, we mostly follow the approaches
of [KO68, Section 2] and [Eis12, Section 3.1]. Throughout this section, let S be a smooth
scheme over a scheme T , and let π ∶ X → S be a smooth proper morphism of schemes.
Define Hq

dR(X/S) to be the relative de Rham sheaf in the complex H●
dR(X/S), i.e. the

quasi-coherent sheaf of graded algebras on S given by

Hq
dR(X/S) ∶= Rqπ∗ (Ω●

X/S) ,
here Rqπ∗ denotes the q-th hyper-derived functor of π∗, and Ω●

X/S denotes the complex

⋀● Ω1
X/S on X whose differentials are induced by the canonical Kähler differential OX/S →

Ω1
X/S . The de Rham complex (Ω●

X/T , d) admits a canonical filtration

Fili (Ω●
X/T ) ∶= Im (π∗Ωi

S/T ⊗OX Ω●−i
X/T → Ω●

X/T ) ,
with associated graded objects

Gri(Ω●
X/T ) ≅ π

∗Ωi
S/T ⊗OX Ω●−i

X/S

(this follows from the exactness of the sequence 0 → π∗Ω1
S/T → Ω1

X/T → Ω1
X/S → 0 for π

smooth). Using the above filtration, one obtains a spectral sequence (Ep,qr ) converging to
Rqπ∗(Ω●

X/T ), whose first page is

Ep,q1 = Rp+qπ∗ (Grp) ≅ Ωp
S/T

⊗OS H
q
dR (X/S)(3.1.0.1)
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and such that the Gauss-Manin connection ∇ is the map d0,q
1 ∶ E0,q

1 → E1,q
1 . Using Equation

(3.1.0.1), we regard ∇ as a map

∇ ∶Hq
dR (X/S) →Hq

dR (X/S) ⊗OS Ω1
S/T .

It is an integrable connection. In this paper, we shall be interested solely in the case of
q = 1.

3.2. The Kodaira-Spencer morphism. We now briefly review the construction of the
Kodaira-Spencer morphism, focusing on the details we need for this paper. More detailed
treatments than we shall need for the present paper are available in [Eis12, Section 3.2],
[Lan13, Sections 2.1.6-7 & 2.3.5], and [CF90, Eis12]. Like in Section 3.1, we let S be a
smooth scheme over a scheme T , and we let π ∶ A → S be a smooth proper morphism of
schemes, and we require A to be an abelian scheme together with a polarization λ ∶ A→ A∨.
We define1 ωA/S ∶= π∗Ω1

A/S . The Kodaira-Spencer morphism is a morphism of sheaves

KS ∶ ωA/S ⊗ ωA∨/S ↠ Ω1
S/T ,

defined as follows. Consider the exact sequence

0→ ωX/S ↪H1
dR(X/S) ↠H1(X,OX) → 0(3.2.0.2)

obtained by taking the first hypercohomology of the exact squence 0 → Ω●≥1
X/S

→ Ω●
X/S →

OX → 0 where we view OX as a complex concentrated in degree 0. By identifying
H1(A,OA) ≅ ω∨A∨/S , we obtain:

0→ ωA/S ↪H1
dR(A/S) ↠ ω∨A∨/S → 0.(3.2.0.3)

The Kodaira-Spencer morphism KS is defined to be the composition of morphisms:

H1
dR (A/S) ⊗ ωA∨/S

[2] // (H1
dR (A/S) ⊗Ω1

S/T ) ⊗ ωA∨/S
[3] // // ω∨A∨/S ⊗Ω1

S/T ⊗ ωA∨/S
[4]
����

ωA/S ⊗ ωA∨/S
?�

[1]

OO

KS // // Ω1
S/T

where [1] is the canonical inclusion from (3.2.0.3) tensored with the identity map on ωA∨/S ,

[2] is ∇⊗ idωA∨/S , [3] is the surjection in (3.2.0.3) tensored with idΩ1
S/T

⊗ idωA∨/S , and [4] is

the pairing ω∨A∨/S ⊗ ωA∨/S → OS tensored with idΩ1
S/T

.

By identifying ωA/S with ωA∨/S via the polarization λ ∶ A→ A∨, we regard KS as a morphism

KS ∶ ωA/S ⊗OS ωA/S ↠ Ω1
S/T .(3.2.0.4)

We now assume S is a scheme equipped with an étale morphism S → Sord
T where T is a

scheme over W. We write A for the corresponding abelian scheme over S; the action of OK
on A induces a decomposition

ωA/S = ⊕
τ∈Σ

(ω+A/S,τ ⊕ ω
−
A/S,τ)(3.2.0.5)

defined as in (2.3.0.1). In the following, we write

ω2
A/S ∶= ⊕τ∈Σ (ω+A/S,τ ⊗ ω

−
A/S,τ) .(3.2.0.6)

1In [Lan13, Lan14], Lan gives an equivalent definition for ωA/S as e∗Ω1
A/S , the pullback via the identity

section of the sheaf of relative differentials on A.
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Proposition 3.2.1. ([Lan14, Proposition 3.4.3.3]) For any étale morphism S → Sord
T over

T , KS induces an isomorphism

ks ∶ ω2
A/S

∼→ Ω1
S/T .(3.2.0.7)

3.3. Definitions of differential operators. We now define differential operators. The
construction is the same as the one in [Eis12, Sections 7-9], which follows the construction
in [Kat78, Chapter II]. Unlike in [Eis09, Eis12], we place no conditions on the signature of
the unitary groups with which we work; but the construction is identical. The place the
generalization of the signature is apparent is in the explicit description of the operators in
terms of coordinates in Section 5.1.

Let A, S, and T /W be as in Proposition 3.2.1. We identify Ω1
S/T with ⊕τ∈Σ (ω+A/S,τ ⊗ ω

−
A/S,τ)

via the isomorphism (3.2.0.7), and ⊕τ∈Σ (ω+A/S,τ ⊗ ω
−
A/S,τ) with its image in H1

dR (A/S)⊗2

via the inclusion (3.2.0.2). Applying Leibniz’s rule (i.e. the product rule) together with the
Gauss-Manin connection ∇, we obtain an operator

∇⊗d ∶H1
dR (A/S)⊗d →H1

dR (A/S)⊗(d+2)

for all positive integers d.

The OK ⊗W-structure on A induces a decomposition

H1
dR (A/S) =⊕τ∈Σ (H+,τ

dR (A/S) ⊕H−,τ
dR (A/S)) ,

such that ω±A/S,τ ⊂ H±,τ
dR (A/S) and ∇(H±,τ

dR (A/S)) ⊆ H±,τ
dR (A/S) ⊗OS Ω1

S/T , for all τ ∈ Σ

([Eis12, Equations (3.3)-(3.4)]). Thus, the image of ∇⊗d is contained in H1
dR (A/S)⊗d ⊗

(⊕τ∈Σ (H+,τ
dR (A/S) ⊗H−,τ

dR (A/S))).

For all positive integers d and e, we define ∇e⊗d ∶= ∇⊗(d+2e) ○ ∇⊗(d+2(e−1)) ○ ⋯ ○ ∇⊗d,

∇e⊗d ∶H1
dR (A/S)⊗d →H1

dR (A/S)⊗d ⊗ (⊕
τ∈Σ

(H+,τ
dR (A/S) ⊗H−,τ

dR (A/S)))
⊗e

.

Proposition 3.3.1. For each positive integer e and each positive dominant weight κ, the
map ∇e⊗d where d = dκ induces a map

∇eκ ∶ Sκ (H1
dR (A/S)) → Sκ (H1

dR (A/S)) ⊗ (⊕
τ∈Σ

(H+,τ
dR (A/S) ⊗H−,τ

dR (A/S)))
⊗e

.

Proof. Note that by definition the operator ∇⊗d is equivariant for the action of Sd (where
we consider the natural action on the d-th tensor power and the action on the d+2-th tensor
power induced by the standard inclusion Sd →Sd+2). I.e.,

∇⊗d ((⋅)σ) = (∇⊗d (⋅))σ for all σ ∈Sd,

for all positive integers d. It follows from the definition that the same holds for the operators
∇e⊗d for all positive integers d and e. Thus, in particular

∇e⊗d(f ⋅ cκ) = (∇e⊗df) ⋅ cκ,

for all f ∈H1
dR (A/S)⊗d, and cκ the generalized Young symmetrizer of κ. �
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For a locally free sheaf of modules F , we sometimes write (F)ρ (resp. ∇eρ) in place Sκ (F)
(resp. ∇eκ), for ρ = ρκ the irreducible representation with highest weight κ.

Note that ∇ρ ∶= ∇1
ρ decomposes a sum over τ ∈ Σ of maps

∇ρ(τ) ∶ (H1
dR (A/S))ρ → (H1

dR (A/S))ρ ⊗ (H+,τ
dR (A/S)⊗H−,τ

dR (A/S)) .
For each nonnegative integer e, we define ∇eρ(τ) to be the composition of ∇(τ) with itself
e times (taking into account that the subscript changes with each iteration).

3.3.1. C∞ differential operators. The construction of the C∞ differential operators in this
section is similar to the one in [Kat78, Section 2.3] and [Eis12, Section 8]. As explained in
[Eis12, Section 8.3], these differential operators are the Maass-Shimura operators discussed
in [Shi00, Section 12]. (The explanation in [Eis12] immediately extends to all signatures.)

Let H1
dR (C∞) ∶= H1

dR (Auniv/M)(C∞), and ω (C∞) ∶= ωAuniv/M
(C∞). By Equation

(3.2.0.5), we have a decomposition

(3.3.1.1) ω (C∞) = ⊕
τ∈Σ

(ω+τ (C∞) ⊕ ω−τ (C∞))

and similarly for H1
dR(C∞).

The Hodge decomposition H1
dR (C∞) = ω (C∞) ⊕ ω (C∞) over M(C∞) (following the con-

vention in [Kat78, Section 1.8], the bar denotes complex conjugation) induces decomposi-
tions

H±,τ
dR (C∞) = ω±τ (C∞) ⊕ ω±τ (C∞),

for all τ ∈ Σ, and the associated projections H±,τ
dR (C∞) ↠ ω±τ (C∞) induce projections

$ρ(C∞) ∶H1
dR (C∞)ρ↠ ω(C∞)ρ,

for all irreducible representations ρ as above.

As in [Kat78, (1.8.6)] and [Eis12, Section 8], ∇(ω(C∞)) ⊆ ω(C∞) ⊗ΩM(C∞)/C. We define

Dρ(C∞) ∶ ω(C∞)ρ → ω(C∞)ρ ⊗⊕ τ∈Σ (ω+τ (C∞) ⊗ ω−τ (C∞))
to be the restriction of ($ρ(C∞) ⊗ id) ○ ∇ρ to ω(C∞)ρ.
For each irreducible representation Z of H that is sum-symmetric of some depth e, let πZ
be the projection of (⊕τ∈Σ (ω+τ (C∞) ⊗ ω−τ (C∞)))e onto ω(C∞)Z defined as in Section 2.4.3
(i.e. by projection onto summands and applying the generalized Young symmetrizer cZ).

We define

DZρ (C∞) ∶= (id⊗ πZ) ○De
ρ(C∞) ∶ ω(C∞)ρ → ω(C∞)ρ ⊗ ω(C∞)Z .

As explained at the end of [Eis12, Section 8.1], the operators DZρ (C∞) canonically induce

operators, which we also denote by DZρ ,

DZρ (C∞) ∶ Eρ(C∞) → Eρ⊗Z(C∞).
(Many additional details of these operators, explicitly for unitary groups of signature (n,n)
but which extend by similar arguments to the case of arbitrary signature, which we do not
need in the present paper, are discussed in [Eis12, Section 8].)

Let κ′ be a sum-symmetric weight of depth e, and κ be a positive dominant weight. Take
ρ = ρκ and Z = ρκ′ . By abuse of notation, we still denote by πκ,κ′ the projection Eρ⊗Z → Eρκ⋅κ′
induced by the projection πκ,κ′ ∶ ρκ ⊗ ρκ′ → ρκκ′ defined in Lemma 2.4.6. We define

Dκ′

κ (C∞) ∶= πκ,κ′ ○DZρ (C∞) ∶ Eκ(C∞) → Eκ⋅κ′(C∞).



DIFFERENTIAL OPERATORS AND FAMILIES 19

3.3.2. p-adic differential operators on vector-valued automorphic forms. We now consider
the pullback of the universal abelian scheme Aord/Sord over Ig. In analogue with the Hodge
decomposition of H1

dR(C∞), there is a decomposition over Ig

H1
dR(Aord/Ig) = ωAord/Ig ⊕U,

where U is Dwork’s unit root submodule, introduced in [Kat73]. By [Kat78, Theorem
(1.11.27)] and [Eis12, Proposition V.8], ∇(U) ⊂ U ⊗Ω1

Ig/W.

As before, for each irreducible representation ρ as above, we define

$ρ(Aord/Ig) ∶H1
dR(Aord/Ig)ρ↠ ωρ

Aord/Ig

to be the projection induced by Dwork’s unit root decomposition after applying the Schur
functor ( )ρ. Note that ωρ

Aord/Ig
is identified with the pullback of Eρ over Ig via the definition

of Schur functors.

Analogously to how we defined the C∞ differential operators De
ρ (C∞), DZρ (C∞), and

Dκ′
κ (C∞) in Section 3.3.1, replacing ω(C∞) by U , we define p-adic differential operators

De
ρ (Aord/Ig), DZρ (Aord/Ig), and Dκ′

κ (Aord/Ig), for all e, Z, κ, κ′, and ρ as above.

In the sequel, for each sum-symmetric weight κ′ of depth e, and each positive dominant
weight κ, we write

Dκ′

κ ∶=Dκ′

κ (Aord/Ig) ∶ Eκ → Eκ⋅κ′ .

4. Localization at an ordinary point

The ultimate goal of this section is to describe the action of the differential operators on
the t-expansions of p-adic automorphic forms. We start by describing the constructions of
Section 3 in terms of Serre-Tate local parameters, now taking S = Sord the ordinary locus of
a connected component S of the Shimura varietyM, and A/S the universal abelian scheme
A = Aord (as defined in the beginning of Section 2.5).

Throughout the section, we fix a point x ∈ Ig(W) lying above x0 ∈ Sord(W), and denote
by x̄, x̄0 their reduction modulo p. In the following, we write R for the complete local ring

RSord,x0
corresponding to Sord∧

x0
introduced in Section 2.7.1, and mR = mx0 for its maximal

ideal. We denote by Aord
x0

the universal formal deformation of the abelian variety with

additional structures A0 = Ax0 , i.e. Aord
x0

is the base change of Aord from Sord to R and has

special fiber A0. By abuse of notation, we also abbreviate Aord
x0

by A.

4.1. The Gauss-Manin connection. In [Kat81] Katz explicitly describes the Gauss-
Manin connection and Dwork’s unit root submodule in terms of the Serre-Tate coordinates.
We recall his results.

Let Ĥ denote the formal relative de Rham cohomology bundle, Ĥ = R1π∗(Ω1
A/R). We write

Φ for the R-semilinear action of Frobenius on Ĥ, and

(4.1.0.1) 0→ ωA/R → Ĥ → ω∨A∨/R → 0

for the (localized) Hodge exact sequence over R (where we identified H1(A,OA) with ω∨A∨/R
as in Equation (3.2.0.3)).

Proposition 4.1.1. [Kat81, Cor. 4.2.2] Notation and assumptions are the same as above.
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(1) There is a canonical Frobenius-equivariant isomorphism

α ∶ Tp(A∨
0) ⊗R → ωA/R,

where the R-semilinear action of Frobenius on the left hand side is defined by ex-
tending multiplication by p on Tp(A∨

0).
(2) There is a canonical Frobenius-equivariant isomorphism

a ∶ Hom(TpA0,Zp) ⊗R → ω∨A∨/R

where the R-semilinear action of Frobenius on the left hand side is defined by ex-
tending the identity on Hom(TpA0,Zp) ⊗R.

(3) The surjection

Ĥ → ω∨A∨/R ≃ Hom(TpA0,Zp) ⊗R

induces an isomorphism between the Zp-submodule L1 of Ĥ where Φ acts trivially
and Hom(TpA0,Zp). The inverse of such an isomorphism defines a canonical split-

ting of the Hodge exact sequence over R, v ∶ ω∨A∨/R → Ĥ, i.e. there is a canonical

R-linear decomposition Ĥ = ωA/R ⊕ (L1 ⊗Zp R).

Remark 4.1.2. The submodule L1 ⊗Zp R agrees with the base change Ux0
of Dwork’s unit

root submodule U to R introduced in Section 3.3.2. In the following, we write UR ⊂ Ĥ for

the the submodule L1 ⊗Zp R ⊂ Ĥ and denote by u ∶ Ĥ → ωA/R the projection modulo UR.

Remark 4.1.3. In our setting, the action of OK on the abelian scheme A/R induces natural
structures of OK-modules on Tp(A∨

0),Hom(TpA0,Zp), ωA/R, and ω∨A∨/R. It follows from

the construction that the isomorphisms α and a are OK-linear.

By abuse of notation we will still denote by ∇ the Gauss-Manin connection on Ĥ/R,

∇ ∶ Ĥ → Ĥ ⊗R Ω1
R/W.

In the following proposition, we denote by q the universal bilinear form on R introduced in
Equation (2.7.1.1), and by Tp(λ) the isomorphism of physical Tate modules, TpA0 ≅ Tp(A∨

0),
induced by the polarization λ. Finally, for any Zp-basis T of TpA0, we denote by {δQ∣Q ∈ T}
the associated dual basis of Hom(TpA0,Zp).

Proposition 4.1.4. ([Kat81, Thm. 4.3.1]) The notation is the same as in Proposition 4.1.1.

(1) For each δ ∈ Hom(TpA0,Zp), the differential ηδ ∶= v(a(δ)) ∈ L1 satisfies ∇ηδ = 0.
(2) For each e ∈ Tp(A∨

0), the differentials ωe = α(e) ∈ ωA/R satisfy

∇ωe = ∑
Q∈T

ηδQ ⊗ dlog q(Q,Tp(λ)−1(e)),

for any Zp-basis T of TpA0.

Note that Part (1) implies that ∇(UR) ⊂ UR ⊗R Ω1
R/W, as stated in Section 3.3.2. Also,

Part (2) implies that for each e ∈ Tp(A∨
0), the differentials ωe satisfy ∇ωe ∈ UR ⊂ Ĥ, i.e.,

u(∇ωe) = 0.
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4.2. The Kodaira-Spencer morphism. In this section, we explicitly describe the Kodaira-
Spencer morphism in terms of the Serre-Tate coordinates. By abuse of notation we will still
denote by KS the localization at the point x0 ∈ Sord(W) of the Kodaira-Spencer morphism,
i.e.

KS ∶ ωA/R ⊗R ωA/R → Ω1
R/W.

Proposition 4.2.1. For all P ∈ TpA0, let ωP ∶= α(Tp(λ)(P )). Then, for all P,P ′ ∈ TpA0

and any Zp-basis T of TpA0,

KS(ωP⊗ωP ′) = ∑
Q∈T

(Q,P ′)λdlogq(Q,P ),

where (, )λ denotes the λ-Weil pairing on TpA0.

Proof. By definition, for any ω1, ω2 ∈ ωA/R,

KS(ω1⊗ω2) = ⟨(π ⊗ id)(∇ω1), λ(ω2)⟩ ∈ ΩR/W,

where π ∶ Ĥ → ω∨A∨/R is the projection in the Hodge exact sequence, λ ∶ ωA/R

∼→ ωA∨/R is the

isomorphism induced by the polarization λ on A, and ⟨, ⟩ ∶ (ω∨A∨/R⊗Ω1
A/R) ×ωA∨/R → Ω1

A/R

is the map obtained by extending the natural pairing (, ) ∶ ω∨A∨/R × ωA∨/R → R by the

identity map on Ω1
A/R.

Let us fix a basis T of TpA0; for all P ∈ T, we write ηP ∶= ηδP = v(a(δP )). We deduce from
the definitions and Proposition 4.1.4 that for all P,Q ∈ T,

⟨π(ηQ), λ(ωP )⟩ = (Q,P )λ, and ∇ωP = ∑
Q∈T

ηQ ⊗ dlogq(Q,P ).

Thus, for all P,P ′ ∈ T, we have

KS(ωP⊗ωP ′) = ⟨(π ⊗ id)∇(ωP ), λ(ωP ′)⟩ =

= ⟨∑
Q∈T

π(ηQ), λ(ωP ′)⟩dlogq(Q,P ) = ∑
Q∈T

(Q,P ′)λdlogq(Q,P ).

�

Remark 4.2.2. Theorem 2.7.1 implies that for any P ∈ TPiA0, q(Q,P ) = 0 unless Q ∈
TPciA0. Thus, the morphism KS factors via the quotient ω2

A/R = ⊕τ∈Σ (ω+A/R,τ ⊗ ω
−
A/R,τ),

and Proposition 3.2.1 implies that the induced map is an isomorphism.

4.3. The differential operators. Finally, in this section we explicitly describe the differ-
ential operators in terms of the Serre-Tate coordinates. By abuse of notation, we will still
denote by Dρ (resp. De

ρ) the localization at x0 of the differential operators Dρ (resp. De
ρ)

introduced in Section 3.3, i.e. its base change to R.

We briefly recall the constructions. Let u ∶ Ĥ → ωA/R denote the projection modulo UR (as

defined in Remark 4.1.2). We define

D ∶= (u⊗ id) ○ ∇ ∶ ωA/R → ωA/R ⊗R Ω1
R/W,(4.3.0.2)

where id denotes the identity map on Ω1
R/W.

By abuse of notation, we still denote by ks−1 ∶ Ω1
R/W

∼→ ω2
A/R ⊂ ω⊗2

A/R
the localization of the

inverse of the Kodaira-Spencer isomorphism defined in Proposition 3.2.1. Let Eρ,x0 denote
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the localization of Eρ, i.e. the base change to R. For any irreducible representation ρ, and
positive integer e ∈ N, the differential operators

De
ρ ∶ Eρ,x0 → Eρ,x0 ⊗R (ω2

A/R)
⊗e

are induced by the restrictions of (id⊗(ks−1)⊗e) ○ (uρ ⊗ id) ○ ∇eρ to ωρ
A/R

. In the following,

we sometimes write Dρ =D1
ρ.

4.3.1. Local description. We fix a point x ∈ Ig(W) lying above x0, and define αx to be the
OK ⊗ZR-linear isomorphism

αx ∶= α ○ (Tp(ι∨x)∨ ⊗ id) ∶ L ⊗Zp R
∼→ TpA

∨
0 ⊗Zp R→ ωA/R,

where Tp(ι∨x) ∶ TpA0 → L∨ is defined as in (2.7.1.2) and α ∶ Tp(A∨
0) ⊗Zp R → ωA/R as in

Proposition 4.1.1(1), and we identify Tp(A∨
0) with (TpA0)∨ via the Weil pairing.

By linearity, we deduce that the isomorphism αx induces isomorphisms

α+x,τ ∶ L+τ ⊗Zp R
∼→ ω+A/R,τ and α−x,τ ∶ L−τ ⊗Zp R

∼→ ω−A/R,τ ,

for each τ ∈ Σ. We write

α2
x ∶= ⊕

τ∈Σ

(α+x,τ ⊗ α−x,τ) ∶ L2 ⊗Zp R
∼→ ω2

A/R,

(recall L2 = ⊕τ∈Σ(L+τ ⊗Zp L−τ )), and

ksx ∶= ks ○ α2
x ∶ L2 ⊗Zp R

∼→ Ω1
R/W.

For any irreducible representation ρ, the map αx also induces an OK ⊗Z R-linear isomor-
phism

αρx ∶ Lρ ⊗Zp R
∼→ Eρ,x0 ,

via the identification of Eρ,x0 with ωρ
A/R

defined by x.

Finally, for all e ∈ N, we define αρ,ex ∶= αρx ⊗R (α2
x)⊗e,

αρ,ex ∶ Lρ ⊗Zp (L2)⊗e ⊗Zp R = (Lρ ⊗Zp R)⊗R ((L2)⊗e ⊗Zp R) ∼→ Eρ,x0 ⊗R (ω2
A/R)

⊗e.

Let d ∶ R → Ω1
R/W denote the universal W-derivation on R. We define

∆ ∶= ks−1
x ○ d ∶ R → L2 ⊗R.

For any integer e ∈ N, we write ∆e ∶= (id(L2)⊗(e−1) ⊗∆) ○ ⋯ ○∆ ∶ R → (L2)⊗e ⊗Zp R.

Proposition 4.3.1. For any irreducible representation ρ, and any integer e ∈ N,

(αρ,ex )−1 ○De
ρ ○ αρx = id⊗∆e ∶ Lρ ⊗Zp R→ Lρ ⊗Zp (L2)⊗e ⊗Zp R,

Proof. Proposition 4.1.4 implies (α ⊗ id)−1 ○D ○ α = id⊗d, with D defined as in (4.3.0.2).
We deduce that

(αx ⊗ id)−1 ○D ○ αx = id⊗d ∶ L ⊗Zp R→ L⊗Zp Ω1
R/W.

Therefore, for any representation ρ, we have

(αρx ⊗ id)−1 ○Dρ ○ αρx = id⊗ks−1 ○ d ∶ Lρ ⊗Zp R→ Lρ ⊗Zp ω
2
A/R,

and thus also (αρ,1x )−1 ○Dρ ○ αρx = id⊗∆.

The general case, for e ≥ 2, follows from the case e = 1. �
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4.3.2. Explicit description of ∆ in terms of Serre-Tate coordinates. We conclude this section
with an explicit description of the map ∆ in terms of Serre-Tate coordinates. Let B be
a Zp-basis of L such that B = ∪τ∈Σ(B+

τ ∪B−
τ ) where, for all τ ∈ Σ, B+

τ = {bτ,1, . . . ,bτ,a+τ }
is a Zp-basis of L+τ and B−

τ = {bτ,a+τ+1, . . . ,bτ,n} is a Zp-basis of L−τ such that B±
τ and

B∓
τc are dual to each other under the Hermitian pairing on L. We denote by E = ∪τ∈ΣEτ

(resp. E∨, Ee = E × ⋯ × E e times, and E∨e = E∨ × ⋯ × E∨ e times) the associated bases of
L2 = ⊕τ∈ΣL+τ ⊗L−τ (resp. (L2)∨, (L2)⊗e, and ((L2)∨)⊗e = ((L2)⊗e)∨). Explicitly,

Eτ = {lτi,j ∶= bτ,i ⊗ bτ,j ∶ 0 < i ≤ a+τ < j ≤ n}.

Note that the pairing on L induces a canonical isomorphism L2 ∼→ (L2)∨, which identifies
E with E∨. In the following, by abuse of notation we write l ↦ l∨, for both the map E→ E∨

and its inverse.

Let β∗x,E∨ ∶ W[[tl∣l ∈ E∨]] ∼→ R denote the Serre-Tate isomorphism associated with the

choice of x and E∨, as defined in Remark 2.7.3. Recall that, for all l ∈ E∨, we have
β∗x,E∨(tl) = q(t−1

x (l)) − 1, with tx = Tp(ιx∨)⊗2.

Proposition 4.3.2. The notation is the same as above. For all f ∈ R and k ∈ E∨, we have

β∗−1
x,E∨((k ⊗ id)(∆(f))) = (1 + tk)∂kβ∗−1

x,E∨(f) ∈W[[tl∣l ∈ E∨]],

where ∂k ∶= ∂
∂tk

denotes the partial derivation with respect to the variable tk.

Proof. From the definition of ∆ follows that it suffices to prove the equalities

β∗−1
x,E∨(k ⊗ id)(∆(β∗x,E∨(tl))) = (1 + tl)δl,k

where δl,k denotes the Kronecker symbol (i.e. δlk = 1 if l = k, and 0 otherwise), for all
k, l ∈ E∨. We have (using Proposition 4.2.1)

∆(β∗x,E∨(tl)) = (α2
x)−1ks−1d(q(t−1

x (l)) − 1) = (α2
x)−1ks−1(dq(t−1

x (l))) =

= (α2
x)−1ks−1(q(t−1

x (l))dlogq(t−1
x (l))) = l∨ ⊗ q(t−1

x (l)),

which implies

β∗−1
x,E∨(k⊗ id)(∆(β∗x,E∨(tl))) = β∗−1

x,E∨(k⊗ id)(l∨⊗q(t−1
x (l))) = β∗−1

x,E∨(δl,kq(t−1
x (l))) = (1+ tl)δl,k.

�

5. Main results on p-adic differential operators

In this section, we construct p-adic differential operators on Hida’s space V N of p-adic auto-
morphic forms by interpolating the differential operators defined in Section 3. First, using
the t-expansion principle and Theorem 2.6.1, we prove that the p-adic differential operators
on the space of classical automorphic form extend uniquely to all of V N (Theorem 5.1.3).
Secondly, we prove that p-adic differential operators of congruent weights are congruent
(Theorem 5.2.6). As a corollary, we establish the existence of p-adic differential operators
of p-adic weights interpolating those of classical weights (Corollary 5.2.8).
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5.1. p-adic differential operators of classical weights. In this section we prove that
the differential operators

Dκ
κ′ ∶ Eρκ′ → Eρκ′⋅κ ,

(where κ′ is a positive dominant weight and κ is a sum-symmetric weight) induce differ-
ential operators Θχ on the space of p-adic automorphic forms V N , satisfying the property
Θχ (V N [χ′]) ⊂ V N [χ′ ⋅ χ] for all p-adic weights χ′.

In the following, we write Eκ (resp. Lκ, ακx, . . . ) in place of Eρκ (resp. Lρκ , αρκx , . . .). By
abuse of notation, we still write Dκ

κ′ in place of the map on global sections

Dκ
κ′(Sord) ∶H0(Sord,Eκ′) →H0(Sord,Eκ′⋅κ).

For any weight κ′, we write Ψκ′ ∶H0(Sord,Eκ′) ↪ V N [κ′] ⊂ V as in (2.6.0.5). By definition,
the localization of Ψκ′ at the point x ∈ Ig(W) agrees with the map

(`κ′can ⊗ id) ○ (ακ′x )−1 ∶ Eκ′,x0 → Lκ
′ ⊗Zp R→R.

where `κ
′

can ∶ Lκ
′ → Zp is defined as in Definition 2.4.2, and id denotes the identity of R.

By abuse of notation, for any sum-symmetric weight κ of depth e, we still denote by

˜̀κ
can ∶ (L2)⊗e → Zp

the map induced by ˜̀κ
can ∶ L⊗2e → Zp as defined in Definition 2.4.2 (recall that (L2)⊗e is a

direct summand of L⊗2e, see also Remark 2.4.5). We write ˜̀κ
can ⊗ id ∶ (L2)⊗e ⊗Zp R→R for

the associated R-linear map.

Definition 5.1.1. For any positive integer e ∈ N, and any sum-symmetric weight κ of depth
e, we define

θκ ∶= (˜̀κ
can ⊗ id) ○∆e ∶ R → (L2)⊗e ⊗Zp R→R.

We call θκ the κ-differential operator on Serre-Tate expansions.

We fix a point x ∈ Ig(W), and write locx ∶ V N → R for the localization map at x as
introduced in Section 2.7.2.

Lemma 5.1.2. For any weights κ,κ′, where κ′ is positive dominant and κ is sum-symmetric,
and for all f ∈H0(Sord,Eκ′), we have

θκ(locx(Ψκ′(f))) = locx(Ψκ′⋅κ(Dκ
κ′(f)).

Proof. Let πκ′,κ ∶ Lκ
′ ⊗ Lκ → Lκ′⋅κ be defined as in Lemma 2.4.6. By Equation (2.4.3.2)

we have `κ
′

can ⊗ `κcan = `κ′⋅κcan ○ πκ′,κ ∶ Lκ
′ ⊗ Lκ → Lκ′⋅κ → R, and the lemma then follows from

Proposition 4.3.1. �

Theorem 5.1.3. For each sum-symmetric weight κ, there exists a unique operator

Θκ ∶ V N → V N

such that Θκ ○Ψ ∶= Ψ ○Dκ
κ′ .

The p-adic κ-differential operator Θκ satisfies the properties:

(1) for all f ∈ V N : locx ○Θκ = θκ ○ locx,
(2) for all weights κ′: Θκ(V N [κ′]) ⊂ V N [κ′ ⋅ κ].
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Proof. Using the fact that Ψ is an injection, we first define Θκ on the image of Ψ in V by

Θκ(f) ∶= Ψ ○Dκ
κ′ ○Ψ−1(f)

for each f ∈ im(Ψκ′) for all positive dominant weights κ′. Since

Ψ

⎛
⎜⎜
⎝

⊕
κ∈X(T )+,
κ positive

H0(Sord,Eκ)
⎞
⎟⎟
⎠
[1

p
] ∩ V N

is dense in V N , it is clear that if Θκ exists, then it is unique. In order to prove that indeed
Θκ extends to all of V N , it is sufficient to check that if f1, f2, . . . ∈ Im(Ψ) converge to an
element f ∈ V N , then Θκ(f1),Θκ(f2), . . . converge in V N to Θκ(f) ∈ V N .

By the Serre-Tate expansion principle (Theorem 2.7.4), one can check convergence after
passing to t-expansions, in which case the statement follows from Lemma 5.1.2. Properties
(1) and (2) follow immediately from the construction. �

Remark 5.1.4. The operators Θκ play a role analogous to the role played by Ramanujan’s
theta operator in the theory of modular forms and Katz’s theta operator in the theory of
Hilbert modular forms (see [Kat78, Remark (2.6.28)]).

5.2. p-adic differential operators of p-adic weights. In this section we establish con-
gruence relations for the differential operators Θκ as κ varies. As an application we deduce
the existence of p-adic differential operators Θχ for p-adic characters χ, interpolating oper-
ators of classical weights.

In the following, we fix a Zp-basis B∨ = ∪τ({b∨τ,1, . . . ,b∨τ,a+τ } ∪ {b∨τ,a+τ+1, . . . ,b
∨
τ,n}) of L∨ as

in Section 4.3.2, and write E∨ (resp. E∨e ) for the associated basis of (L2)∨ (resp. ((L2)⊗e)∨).

Remark 5.2.1. For any sum-symmetric weight κ = (κτ1 ,⋯, κτn), Equation (2.4.3.1), i.e.

(5.2.0.1) ˜̀κ
can = ∏

τ∈Σ

n

∏
i=1

(κτi !)−1 ⋅ ⊗
τ∈Σ

n

⊗
i=1

(b∨τ,i)⊗κ
τ
i ⋅ cκ,

implies that ˜̀κ
can is a linear combination of elements of the basis E∨e of ((L2)∨)⊗e with

coefficients in {±1}, for e = ∑
τ∈Σ

a+τ
∑
i=1

κτi the depth of κ.

For all l = (l1, . . . , le) ∈ E∨e , we define aκ,l ∈ {0,±1} such that ˜̀κ
can = ∑l∈E∨e aκ,l ⋅ l.

We choose a point x ∈ Ig(W), and write β∗x,E∨ ∶ W[[tl∣l ∈ E∨]] ∼Ð→ R for the Serre-Tate

isomorphism at the point x, written with respect to the Zp-basis E∨ of (L2)∨.

Lemma 5.2.2. The notation is the same as above. For any sum-symmetric weight κ of
depth e, and for all f ∈ R, we have

β∗−1
x,E∨(θκ(f)) = ∑

l=(l1,...,le)∈E∨e

aκ,l(1 + tle)∂le (. . . (1 + tl2)∂l2 ((1 + tl1)∂l1(β∗−1
x,E∨(f))) . . . ) .

Proof. The equality follows from the definitions and Proposition 4.3.2. �
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5.2.1. Congruences and actions of p-adic differential operators. We now prove a lemma
describing properties of certain differential operators θd that are closely related to those
appearing in the right-hand side of the equality in Lemma 5.2.2. For each l = (l1, . . . , le) ∈ E∨e ,
we define

θle ∶W[[tl∣l ∈ E∨]] → W[[tl∣l ∈ E∨]]
β ↦ (1 + tle)∂le (. . . (1 + tl2)∂l2 ((1 + tl1)∂l1(β)) . . . ) .

For convenience, we first introduce some more notation. For all lτi,j ∈ E∨ as in Section 4.3.2,
we define

(5.2.1.1) θτi,j ∶W[[tl∣l ∈ E∨]] →W[[tl∣l ∈ E∨]] f ↦ (1 + tlτi,j)
∂

∂tlτi,j
f.

Note that these operators commute, i.e. for lτi,j and lτ
′

i′,j′ ∈ E∨, θτi,j ○ θτ
′

i′,j′ = θτ
′

i′,j′ ○ θτi,j .

For all d= (dτi,j)lτi,j∈E∨ ∈ Z
∣E∨∣
≥0 , we define θd as the composition of the dτi,j-th iterates of θτi,j for

all lτi,j ∈ E∨ (we take (θτi,j)0 = id). By commutativity, the order does not matter. For each

l ∈ E∨e , we define d(l) to be the tuple of non-negative integers such that

(5.2.1.2) θd(l) = θle.

Remark 5.2.3. For all polynomials f(t) ∈ R =W[[tl∣l ∈ E∨]], if we write f(t) = ∑α cα(1+t)α,

where (1 + t)α ∶= ∏τ ∏i,j(1 + tlτi,j)
ατj,i for a collection of numbers ατj,i ∈ Z≥0, then

(θdf)(t) = ∑
α

φd(α)cα(1 + t)α,

where φd is a polynomial (in the numbers ατj,i) dependent on d. (We set α ∶= (ατ)τ , with

ατ = (ατj,i).)

Proposition 5.2.4. Let κ,κ′ be two symmetric weights (as in Definition 2.4.4) and let
m ≥ 1 be an integer. Assume

κ ≡ κ′ modpm(p − 1)
in Zrn. Additionally, if

(i) min(κτi −κτi+1, κ
′τ
i −κ′

τ
i+1) >m for all τ ∈ Σ and 1 ≤ i < a+τ for which κτi − κτi+1 ≠ κ′

τ
i − κ′

τ
i+1, and

(ii) min(κτa+τ , κ
′τ
a+τ) >m for all τ ∈ Σ for which κτa+τ ≠ κ

′τ
a+τ

,

then θκ ≡ θκ′ modpm+1.

Proof. By Lemma 5.2.2 and Equation (5.2.1.2), we obtain

(5.2.1.3) β∗−1
x,E∨ ○ θκ ○ β∗x,E∨ = ∑

l∈E∨e

aκ,l ⋅ θd(l) .

We assume without loss of generality that

κ′ = κ ⋅ (ετ1ετa+τ+1ε
τ
2ε
τ
a+τ+2...ε

τ
i ε
τ
a+τ+i

)p
m(p−1)

for some τ ∈ Σ. (Recall that ετj denotes the character of T (Zp) given by ετj (diag(γσ1,1,⋯, γσn,n)σ∈Σ) =
γτj,j , i.e. such that κτ = ∏j(ετj )

κτj .) By combining Equations (5.2.1.3) and (5.2.0.1), and an-
alyzing the action of the generalized Young symmetrizer, we obtain that
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β∗−1
x,E∨ ○ θκ

′ ○ β∗x,E∨ = ∑
l∈E∨e

aκ,lθ
d(l) ⎛

⎝
i! ⋅

⎛
⎝ ∑σ∈Si

(−1)sgn(σ) ⋅
i

∏
j=1

θτj,a+τ+σ(j)
⎞
⎠
⎞
⎠

pm(p−1)

(5.2.1.4)

≡ ∑
l∈E∨e

aκ,lθ
d(l)(5.2.1.5)

= β∗−1
x,E∨ ○ θκ ○ β∗x,E∨ modpm+1,

where congruence (5.2.1.5) follows from the following observation.

In the notation of Remark 5.2.3,

⎛
⎝
i! ⋅

⎛
⎝ ∑σ∈Si

(−1)sgn(σ) ⋅
i

∏
j=1

θτj,a+τ+σ(j)
⎞
⎠
⎞
⎠

pm(p−1)

has the effect of multiplying each polynomial φd(l)(α) by

⎛
⎝
i! ⋅

⎛
⎝ ∑σ∈Si

(−1)sgn(σ) ⋅
i

∏
j=1

ατa+τ+σ(j),j
⎞
⎠
⎞
⎠

pm(p−1)

≡ { 1 modpm+1 if each ατa+τ+σ(j),j is relatively prime to p

0 modpm otherwise,

because p > n (though note that p > maxτ∈Σ{min(a+τ , a−τ)} is enough). If some ατa+τ+σ(j),j
is divisible by p, then φd(l)(α) ≡ 0 modpm+1 by assumptions (i) and (ii).

Hence, we conclude that θκ ≡ θκ′ modpm+1 for all symmetric weights κ and κ′ satisfying the
above hypotheses. �

Remark 5.2.5. Note that if κ is sum-symmetric, but not symmetric, then θκ = 0. This
follows by combining Equation (5.2.1.3) and 5.2.0.1 together with an analysis of the action
of the generalized Young symmetrizer cκ.

Theorem 5.2.6. Let κ,κ′ be two symmetric weights and m ≥ 1 be an integer. Assume

κ ≡ κ′ modpm(p − 1)

in Zrn. Additionally, if

● min(κτi −κτi+1, κ
′τ
i −κ′

τ
i+1) >m for all τ ∈ Σ and 1 ≤ i < a+τ for which κτi − κτi+1 ≠ κ′

τ
i − κ′

τ
i+1, and

● min(κτa+τ , κ
′τ
a+τ) >m for all τ ∈ Σ for which κτa+τ ≠ κ

′τ
a+τ

,

then Θκ ≡ Θκ′ modpm+1.

Proof. By the p-adic Serre-Tate expansion principle (Theorem 2.7.4), combined with Prop-

erty (1) in Theorem 5.1.3, Θκ ≡ Θκ′ modpm+1 if and only if θκ ≡ θκ′ modpm+1. Then the
statement follows from Proposition 5.2.4. �

Definition 5.2.7. We define a (symmetric) p-adic character to be a continuous group
homomorphism T (Zp) → Z∗p that arise as the p-adic limit of the Zp-points of characters
corresponding to (symmetric) weights.

Proposition 5.2.4 enables us to define by interpolation the differential operators θχ on R for
all symmetric p-adic characters χ. The following result is then an immediate consequence
of Theorem 5.2.6.
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Corollary 5.2.8. For all symmetric p-adic characters χ, there exist p-adic differential
operators

Θχ ∶ V N → V N

interpolating the p-adic κ-differential operators previously defined for classical weights, and
satisfying the following proerties:

(1) for all f ∈ V N : locx ○Θχ = θχ ○ locx,
(2) for all p-adic characters χ′: Θχ(V N [χ′]) ⊂ V N [χ′ ⋅ χ].

5.2.2. Polynomials φκ. The remainder of this section introduces some notation and results
needed in Section 7.

Definition 5.2.9. For each sum-symmetric weight κ, there is a unique polynomial φκ with
integer coefficients such that for all polynomials f(t) ∈ R = W[[t]], if we write f(t) =
∑α cα(1 + t)α in the notation of Remark 5.2.3, then

(θκf)(t) = ∑
α

φκ(α)cα(1 + t)α.

From the description of the action of the differential operators described in Equation
(5.2.1.4) together with Equation (5.2.1.1), we deduce the following corollary of the proof of
Proposition 5.2.4.

Corollary 5.2.10. Let κ be a sum-symmetric weight. Then

φκ(α) = ∏
τ∈Σ

((a+τ ! ⋅mτ
a+τ

(α))κ
τ
a+τ

a+τ−1

∏
i=1

(i! ⋅mτ
i (α))

κτi −κ
τ
i+1)

where mτ
i (α) is (a determinant of) an i × i minor of the matrix α, for each i, 1 ≤ i ≤ a+τ ,

and τ ∈ Σ.

Remark 5.2.11. Let κ and κ′ be two sum-symmetric weights satisfying the conditions of
Proposition 5.2.4. Then

φκ(α) ≡ φκ′(α)modpm+1.

We extend the definition of the polynomials φκ as follows. We write OCp for the ring of
integers of Cp, the completion of an algebraic closure of Qp.

Definition 5.2.12. Let ζ ∶ T (Zp) → O∗Cp be any continuous group homomorphism. We

write ζ = ∏τ∈Σ (∏n
i=1 ζ

τ
i ⋅ ετi ), where the ζτi are continuous group homomorphisms Z∗p → O∗Cp

(possibly including finite order characters). We define

φζ(α) ∶= ∏
τ∈Σ

((ζτa+τ (a+τ ! ⋅mτ
a+τ

(α)))
a+τ−1

∏
i=1

(ζτi ⋅ (ζτi+1)
−1) (i! ⋅mτ

i (α))) ,(5.2.2.1)

where the mτ
i (α) are as in Corollary 5.2.10.

Remark 5.2.13. It follows from the defintion that, if ζ, ζ ′ ∶ T (Zp) → O∗Cp are two continuous

group homomorphisms satisfying ζ ≡ ζ ′ modpm+1, then φζ(α) ≡ φζ′(α)modpm+1.
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6. Pullbacks

In this section, we discuss the composition of the differential operators with pullbacks to
a smaller group. This construction is similar to the one in [Eis16, Section 3]. We fur-
ther describe the action in terms of Serre-Tate coordinates (which are absent from [Eis16]),
and then we obtain formulas (in terms of Serre-Tate coordinates) in the case of all signa-
tures. (Using q-expansions, [Eis16] had only obtained formulas when the signature at each
archimedean place was one of just two possibilities.) This section builds on [CEF+16, Sec-
tion 6], which provides details about pullbacks of automorphic forms in terms of Serre-Tate
coordinates.

6.1. Pullback and restriction of automorphic forms. We start by introducing the
required notation. Let L = ⊕si=1Wi be a self-dual OK-linear decomposition of the free Z-
module L. For each i, 1 ≤ i ≤ s, we denote by ⟨, ⟩i the pairing on Wi induced by ⟨, ⟩ on L,

and define GUi = GU(Wi, ⟨, ⟩i), a unitary group of signature (a+(i)τ , a−
(i)
τ )

τ∈ΣK
. We write

νi ∶ GUi → Gm for the similitude factor. Note that the signatures (a+(i)τ , a−
(i)
τ )

i=1,...,s
form a

partition of the signature (a+τ , a−τ). We define G′ ∶= ν−1
0 (Gm) ⊂ ∏iGUi, where ν0 ∶= ∏i νi,

and Gm ⊂ Gs
m is embedded diagonally. Then, there is a canonical injective homomorphism

G′ ↪ GU , which induces a map φ between the associated moduli spaces, φ ∶ M′ →M. Let
S ′ be a connected component of M′

W. We can identify S ′ with the cartesian product of
connected components of the smaller unitary Shimura varieties. We write S for the unique
connected component of MW containing the image of S ′, and we still denote by φ ∶ S ′ → S
the restriction of φ.

We assume the prime p splits completely over each of the reflex fields Ei, i = 1, . . . , s,
associated with the smaller Shimura varieties, and let φ ∶ S ′ord → Sord also denote the
restriction of φ to the ordinary loci. We denote respectively by Ig′, Ig the Igusa towers over
S ′ord, Sord, and define

H ′ = ∏
τ∈Σ,1≤i≤s

GL
a+
(i)
τ̃

×GL
a−
(i)
τ̃

.

We also write H ′ = ∏1≤i≤sHi, where Hi = ∏τ∈Σ GL
a+
(i)
τ̃

×GL
a−
(i)
τ̃

, for all i = 1, . . . , s. The

algebraic group H ′ can be identified over Zp with a Levi subgroup of G′ ∩U . Thus we have
a closed immersion H ′ →H arising from the inclusion of G′ into GU and the identification
over Zp of H with a Levi subgroup of U . This allows us (by choosing without loss of
generality a suitable basis) to identify the maximal torus T of H with a maximal torus T ′

in H ′. In the following, we denote by X(T ′)+ the set of the weights in X(T ′) =X(T ) that
are dominant with respect to the roots of ∆ that belong to the root system of H ′. We also

write V ′N
′

for the space of p-adic automorphic forms on H ′.

6.1.1. Pullbacks. In [CEF+16, Proposition 6.2] we observed that the map φ ∶ S ′ord → Sord

lifts canonically to a map between the Igusa covers, Φ ∶ Ig′ → Ig. As a consequence, we

are able to explicitly describe the pullback φ∗ ∶ V N → V ′N
′

in the Serre-Tate coordinates
associated with a point x ∈ Ig′(W) (and Φ(x) ∈ Ig(W)). To recall the result we first
establish some notation. For each τ ∈ Σ, we denote by L±τ = ⊕si=1L

±
i,τ the associated Zp-

linear decompositions of the modules L±τ (arising from the signature partition). We define
L2 ∶= ⊕iL2

i , where for each i = 1, . . . , s

L2
i ∶= ⊕

τ∈Σ

(L+i,τ ⊗Zp L
−
i,τ).
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In the following we denote by ε ∶ L2 ↪ L2 the natural inclusion as a direct summand.

We fix a point x ∈ Ig′(W), and we write x0 ∈ S
′ord(W) for the point below x (thus the point

Φ(x)∈ Ig(W) is above φ(x0) ∈ Sord(W)). Following the notation of Section 2.7.1, we write

β∗Φ(x) ∶W[[t]] ⊗ (L2)∨ ∼→R ∶= RSord,φ(x0), and β∗x ∶W[[t]] ⊗ (L2)∨ ∼→R′ = RS′ord,x0
,

for the corresponding Serre-Tate isomorphisms of complete local rings.

In [CEF+16, Proposition 6.8], we prove that the ring homomorphism φ∗ ∶ R → R′ induced

by the map φ ∶ S ′ord → Sord satisfies the equality

φ∗ ○ β∗Φ(x) = β
∗
x ○ (id⊗ε∨).(6.1.1.1)

Remark 6.1.1. For a choice of compatible bases F ⊂ E of L2 ⊂ L2, the pullback map on local
rings

id⊗ε∨ ∶ R ≃W[[t]] ⊗ (L2)∨ =W[[tl∣l ∈ E∨]] → R′ ≃W[[t]] ⊗ (L2)∨ =W[[tl∣l ∈ F∨]]
satisfies the equalities

(id⊗ε∨)(tl) =
⎧⎪⎪⎨⎪⎪⎩

tl if l ∈ F∨
0 otherwise

for all l ∈ E∨.

In the following, with abuse of notations, we will identify R′ ≃ W[[tl∣l ∈ F∨]] via β∗x , and
R ≃W[[tl∣l ∈ E∨]] via β∗Φ(x).

6.1.2. Restrictions of p-adic automorphic forms. Finally, we recall the definition of restric-
tion on the space of p-adic automorphic forms.

Let κ,κ′ be two characters of the torus T ′ = T . Assume κ ∈ X(T )+, and κ′ ∈ X(T ′)+;
i.e., κ is dominant for H, and κ′ is dominant for H ′. We say that κ′ contributes to κ if
ρκ′ is a quotient of the restriction of ρκ from H to H ′. In the following, we denote by
$κ,κ′ a projection ρκ∣H′ → ρκ′ of H ′

Zp-representations. If κ′ = κσ for some σ in the Weyl

group WH(T ), then we choose $κ,κ′ to satisfy the equality `κcan = `κ′can ○$κ,κ′ ○ gσ, where
gσ ∈ NH(T )(Zp) is the elementary matrix lifting σ (and NH(T ) denotes the normalizer of
T in H).

Remark 6.1.2. If κ is a dominant weight of H, then κ is also dominant for H ′ and as a
weight of H ′ it contributes to κ.

Remark 6.1.3. Assume κ′ is a weight of H ′ contributing to a weight κ of H. Then, for each
weight λ of H, the weight λ ⋅ κ′ of H ′ contributes to λ ⋅ κ.

For each κ ∈ X(T )+, let φ∗Eκ denote the pullback over M′ of the automorphic sheaf over
M. To avoid confusion, we will denote by E ′κ′ the automorphic sheaf of weight κ′ over M′,
for κ′ ∈ X(T ′)+. Then, for all weights κ′ ∈ X(T ′)+ contributing to κ, there is a morphism
of sheaves over M′,

rκ,κ′ ∶ φ∗Eκ → E ′κ′ .

We define the (κ,κ′)-restriction on automorphic forms to be the map of global sections

resκ,κ′ ∶= rκ,κ′ ○ φ∗ ∶H0(M,Eκ) →H0(M′,E ′κ′).
By abuse of notation we will still denote by resκ,κ′ the map induced by resκ,κ′ between the
spaces of sections of automorphic sheaves over the ordinary loci, i.e.

resκ,κ′ ∶H0(Sord,Eκ) →H0(S ′ord,E ′κ′).
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In the following, we write resκ ∶= resκ,κ.

Finally, we define the restriction on p-adic automorphic forms as the pullback on global
functions on the Igusa tower under Φ ∶ Ig′ → Ig, i.e.

res ∶= Φ∗ ∶ V N → V ′N
′

.

In [CEF+16, Propositions 6.5 and 6.6], we compare the two notions of restriction. Again, to

avoid confusion, for all weights κ′ ∈X(T ′)+, we denote by Ψ′
κ′ the inclusion H0(S ′ord,E ′κ′) →

V ′N
′

, to distinguish it from the inclusion Ψκ ∶ H0(Sord,Eκ) → V N for κ ∈ X(T )+. Then for
all dominant weights κ ∈X(T )+,

res ○Ψκ = Ψ′
κ ○ resκ,(6.1.2.1)

More generally, if κ′ ∈ X(T ′) is conjugate to κ, i.e. (κ′)σ = κ for some σ ∈WH(T ), then κ′

contributes to κ and

Ψ′
κ′ ○ resκ,κ′ = res ○ (gσ ⋅Ψκ),(6.1.2.2)

for gσ ∈ NH(T )(Zp) lifting σ as above.

6.2. Pullbacks and differential operators. Let λ ∈ X(T ) = X(T ′). It follows from
Definitions 2.4.3 and 2.4.4 that if λ is (sum-)symmetric for H ′ and dominant for H, then it
is also (sum-)symmetric for H, while the converse is false in general. In the following, we say
that a weight of H is H ′-(sum-)symmetric if it is (sum-)symmetric for H ′. Similarly, we say
that a p-adic character of H is H ′-symmetric if it arises as the p-adic limit of H ′-symmetric
weights.

For any weight (resp. p-adic character) λ of H ′, and for all i = 1, . . . , s, we write λi ∶= λ∣Hi

for the restriction of λ to Hi ⊂ H ′. Then, for each i, λi is a weight (resp. p-adic character)
of Hi. We observe that a weight λ is dominant (resp. sum-symmetric) for H ′ if and only if,
for each i = 1, . . . , s, the weight λi is dominant (resp. sum-symmetric) for Hi. Furthemore,
if, for each i = 1, . . . , s, λi is sum-symmetric for Hi of depth ei, then λ is sum-symmetric for
H of depth e = ∑ ei if it is dominant.

Definition 6.2.1. A sum-symmetric weight λ of H ′ of depth e is called pure if there exists
i ∈ {1, . . . , s} such that λi is sum-symmetric of depth e. Equivalently, a weight λ is pure
sum-symmetric if there exists i ∈ {1, . . . , s} such that λj is trivial for all j ≠ i and is sum-
symmetric for j = i.
Similarly, a symmetric p-adic character χ of H ′ is called pure if there exists i ∈ {1, . . . , s}
such that χj ∶= χ∣Hj is trivial for all j ≠ i and symmetric for j = i.
Remark 6.2.2. If a sum-symmetric weight λ of H ′ is pure, of depth e, then the associated
irreducible representation ρλ of H ′

Zp is a quotient of (L2
i )⊗e, for some i ∈ {1, . . . , s} (where

⊕i(L2
i )⊗e is by definition a direct summand of (L2)⊗e).

In the following, we say that a weight (resp. p-adic character) of H is pure H ′-sum-
symmetric if it is a pure sum-symmetric for H ′.

Note that if λ is pure H ′-sum-symmetric, with λi non-trivial of depth e, than λ is sum-
symmetric of H also of depth e, if it is dominant (see Remark 6.2.5).

Remark 6.2.3. A weight λ of H is both dominant for H and pure H ′-sum-symmetric if and
only if λ1 is sum-symmetric for H1 and λj is trivial for all j > 1.

Similarly, a p-adic character χ of H is both pure and H ′-symmetric if and only if χ1 is a
p-adic symmetric character of H1 and χj is trivial for all j > 1.
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For each H ′-sum-symmetric weight λ of H and positive dominant weight κ′ of H ′, we write

Dλκ′ ∶H0(S ′ord,E ′κ′) →H0(S ′ord,E ′λ⋅κ′),
for the associated differential operators on the automorphic forms of weight κ′.

For each H ′-symmetric p-adic character χ of H, we write

Θ
′χ ∶ V ′N

′

→ V ′N
′

for the corresponding operator on the space of p-adic automorphic forms (as in Theorem
5.1.3).

Proposition 6.2.4. For all pure H ′-symmetric p-adic characters χ of H that are H-
symmetric

res ○Θχ = Θ
′χ ○ res.

Proof. By the t-expansion principle, it suffices to verify the above equality after localizing at
an ordinary point, i.e. as an equality of operators on t-expansions. Moreover, by Theorem
5.2.6, it is enough to consider the case when χ has integral weight λ.

In view of Remark 6.1.1 (together with the formulas in Lemmas 5.1.2 and 5.2.2), the state-
ment is a consequence of the assumptions on λ (which imply that the coefficients aλ,l
defined in Remark 5.2.1 satisfy aλ,l = 0 for all l ∈ E∨e − F∨e ) together with the following
general fact. For all positive integers n,m ∈ N, n ≥ m, the homomorphism of W-algebras
W[[t1, . . . , tn]] →W[[t1, . . . , tm]] defined as

f = f(t1, . . . , tn) ↦ f(t,0) ∶= f(t1, . . . , tm,0, . . .0)
satisfies the equalities

(1 + ti)
∂

∂ti
(f(t,0)) = ((1 + ti)

∂

∂ti
f)(t,0),

for all i = 1, . . . ,m. �

Remark 6.2.5. As an example, we consider the partition (1,1), (1,1) of the signature (2,2),
and weights λ = (2,0,2,0) and λ′ = (1,1,1,1). Note that both λ,λ′ are dominant symmetric
weights of both H = GL(2) ×GL(2) and H ′ = GL(1) ×GL(1) ×GL(1) ×GL(1), but only
λ is H ′-pure. Write Φ∗ ∶ R ≃ W[[t1,3, t1,4, t2,3, t2,4]] → R′ ≃ W[[T1,3, T2,4]] for the map of
complete local rings at an ordinary point corresponding to the inclusion of Igusa varieties.
With our notations, Φ∗(ti,j) = Ti,j for (i, j) = (1,3), (2,4) and 0 otherwise. If we compute

the associated differential operators θλ and θλ
′

of R, we obtain θλ = (θ1,3)2 and θλ
′ =

θ1,3θ2,4 − θ1,4θ2,3. If instead we compute the associated differential operators θ
′λ and θ

′λ′on

R′, we obtain θ
′λ = (θ′1,3)2 and θ

′λ′ = θ′1,3θ
′
2,4. It is easy to check that as maps on R′

θ
′λ ○ Φ∗ = Φ∗ ○ θλ but θ

′λ′ ○ Φ∗ ≠ Φ∗ ○ θλ′ . An explanation comes from the fact that the
weight λ has depth 2 for both H and H ′, while λ′ should be regarded as of depth 2 for H
and 1 for H ′.

We now consider the case of a pure symmetric p-adic character χ of H ′, which is not a sym-
metric p-adic character of H (i.e., of χ arising as the p-adic limit of pure symmetric weights
which are dominant for H ′ but not for H). For such p-adic characters we have already
defined a differential operator on automorphic forms on H ′ but not on H, Proposition 6.2.6
explains how to extend it to H.

Note that for any weight λ of H ′, there is a unique weight λ0 which is dominant for H
and conjugate to λ under the action of the Weyl group WH(T ), i.e. λ0 = λσ for some
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σ ∈WH(T ). If λ is a (sum-)symmetric weight of H ′, then λ0 is a (sum-)symmetric weight of
H. Furthermore, if λ is pure sum-symmetric for H ′, then the permutation σ ∈WH(T ) can
be chosen to arise from a permutaiton of {1, . . . , s}. More precisely, if i ∈ {1, . . . , s} is such
that λj is trivial for all j ≠ i, then we can choose σ = σ(1i) to correspond to the permutation
(1i). (Here, for each permutation γ on {1, . . . , s}, we define σγ to be the element of WH(T )
induced by the action of γ on the partition {(a+(j)τ , a−

(j)
τ )τ∈Σ∣j = 1, . . . , s} of the signature

(a+τ , a−τ)τ∈Σ.) In particular, we observe that λ0 is pure sum-symmetric for the subgroup
H ′
σ ∶= ∏1≤j≤sHγ(j) of H, for γ = (1i).

Proposition 6.2.6. For all pure symmetric p-adic characters χ of H ′, let σ = σ(1i), for
i ∈ {1, . . . , s} such that χj is trivial for all j ≠ i. Then χσ is a symmetric p-adic character
of H and

Θ
′χ ○ res = res ○ (gσ ○Θχσ ○ g−1

σ ).

Proof. As in the proof of Proposition 6.2.4, we use Theorem 5.2.6 to reduce to the case
when χ has integral weight λ, and by the t-expansion principle it suffices to establish the
equality after localization at a point x of the smaller Igusa tower Ig′. For all f ∈ V N , on
one side we have

(Θ′λ ○ res)(f)x(t) = θ
′λ(res(f)x(t)) = θ

′λ ○Φ∗(fΦ(x)(t)),
and on the other

(res○(gσ○Θλσ○g−1
σ ))(f)x(t) = Φ∗((gσ○Θλσ○g−1

σ )(f)Φ(x)(t)) = (Φ∗○gσ)((Θλσ○g−1
σ )(f)Φ(x)gσ (t)) =

= (Φ∗ ○ gσ ○ θλ
σ)((g−1

σ )(f)Φ(x)gσ (t)) = (Φ∗ ○ gσ ○ θλ
σ ○ g−1

σ )((f)Φ(x)(t)).
Thus, we have reduced the statement to an equality of two maps R ≃W[[tl∣l ∈ E∨]] → R′ ≃
W[[tl∣l ∈ F∨]], i.e.

θ
′λ ○Φ∗ = Φ∗ ○ gσ ○ θλ

σ ○ g−1
σ ,

where Φ∗ = id⊗ ε∨ is the map on complete local rings corresponding to the map Φ between
Igusa varieties described in Remark 6.1.1. Recall that the action of gσ on W[[tl∣l ∈ E∨]]
is given by the formula gσ(tl) = tσ(l) for all l ∈ E∨. Write θλ

σ = ∑l∈E∨e aκ,l ⋅ θ
d(l) and define

θλ ∶= ∑l∈E∨e aκ,l ⋅ θ
d(σ(l)) (note that here λ is possibly not dominant for H). Then, on the

right hand side, we have

Φ∗ ○ gσ ○ θλ
σ ○ g−1

σ = Φ∗ ○ θλ ○ gσ ○ g−1
σ = Φ∗ ○ θλ.

Finally, the same computation as in the proof of Proposition 6.2.4 implies θ
′λ ○ Φ∗ = Φ∗ ○

θλ. �

Remark 6.2.7. Given a pure H ′-(sum)-symmetric dominant weight λ of H, Proposition 6.2.4
together with Equation (6.1.2.1) imply the equality

resλ⋅κ ○Dλ
κ = Dλκ ○ resκ,

for all positive dominant weights κ of H. In fact, the same argument, combined with
Equation (6.1.2.2), also proves

resλ⋅κ,λ⋅κ′ ○Dλ
κ = Dλκ′ ○ resκ,κ′ ,

for all dominat weights κ of H, and κ′ of H ′, such that (κ′)σ = κ for some σ ∈ WH(T ),
assuming λσ = λ. Similarly, given a pure sum-symmetric weight λ of H ′, if i ∈ {1, . . . , s} is
such that λ0 = λσ(1i) is a (sum-symmetric) dominant weight of H, then Proposition 6.2.6
and Equation (6.1.2.2) together imply that

resλ0⋅κ,λ⋅κ ○Dλ0
κ ○ g−1

σ = Dλκ ○ resκ,
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for all positive dominant weights κ of H, satisfying κσ(1i) = κ.

7. p-adic families of automorphic forms

In this section, we construct p-adic families of automorphic forms on unitary groups. To
construct the families, we apply the differential operators introduced above to the Eisenstein
series constructed in [Eis14, Eis15] and then apply Theorem 5.2.6. We also construct a p-adic
measure by applying the description of the differential operators in Section 5.2.1 (especially
Equation (5.2.2.1)).

7.1. Prior results on families for signature (n,n). We begin by recalling the Eisenstein
series in [Eis14], which include the Eisenstein series in [Kat78, Eis15] as special cases.
Similarly to the notation in [Eis14], for k ∈ Z and ν = (ν(σ))σ∈Σ ∈ ZΣ, we denote by Nk,ν

the function

Nk,ν ∶K× →K× b↦ ∏
σ∈Σ

σ(b)k (σ(b)
σ(b))

ν(σ)

.

Note that for all b ∈ O×K+ , Nk,ν(b) = NK+/Q(b)k.
The theorem below gives explicit q-expansions of automorphic forms. Note that as explained
in [Hid04, Section 8.4], to apply the p-adic q-expansion principle in the case of a unitary
group U(n,n) of signature (n,n) at each place (for some integer n), it is enough to check the
cusps parametrized by points of GM+ (AK+), where GM+ denotes a certain Levi subgroup
of U(n,n). (More details about cusps appear in [Hid04, Chapter 8] and, as a summary, in
[Eis14]; we will not need the details here.)

Theorem 7.1.1 (Theorem 2 in [Eis14]). Let R be an OK-algebra, let ν = (ν(σ)) ∈ ZΣ, and
let k ≥ n be an integer. Let

F ∶ (OK ⊗Zp) ×Mn×n (OK+ ⊗Zp) → R

be a locally constant function supported on (OK ⊗Zp)× ×GLn (OK+ ⊗Zp) that satisfies

F (ex,NK/E(e−1)y) = Nk,ν(e)F (x, y)(7.1.0.3)

for all e ∈ O×K , x ∈ OK ⊗ Zp, and y ∈ Mn×n (OK+ ⊗Zp). There is an automorphic form
Gk,ν,F on GU(n,n) defined over R whose q-expansion at a cusp m ∈ GM+ (AK+) is of the
form ∑0<α∈Lm c(α)qα (where Lm is a lattice in Hermn(K) determined by m), with c(α) a
finite Z-linear combination of terms of the form

F (a,NK/E(a)−1α)Nk,ν (a−1 detα)NE/Q (detα)−n

(where the linear combination is a sum over a finite set of p-adic units a ∈ K dependent
upon α and the choice of cusp m).

Let (R, ι∞) consist of an OE′,(p)-algebra R together with a ring inclusion ι∞ ∶ R ↪ C. Given
an automorphic form f defined over R, we view f as a p-adic automorphic form via Ψ or
as a C∞-automorphic form after extending scalars via ι∞ ∶ R ↪ C.

Remark 7.1.2. The C∞-automorphic forms Gk,ν,F are closely related to the C∞-Eisenstein
series studied by Shimura in [Shi97]; the difference between Shimura’s Eisenstein series and
these ones is the choice of certain data at p, which allows one to put Gk,ν,F into a p-adic

family. For R = C, these are the Fourier coefficients at s = k
2 of certain weight k C∞-

automorphic forms Gk,ν,F (z, s) (holomorphic at s = k
2 ) defined in [Eis14, Lemma 9]. We do

not need further details about those C∞-Eisenstein series for the present paper.
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7.2. Families for arbitrary signature. For each symmetric weight κ, we define

Gk,ν,F,κ ∶= resΘκGk,ν,F ,

where res is the restriction on automorphic forms from GU(n,n) to G′ (i.e. the pullback
followed by projection onto an irreducible quotient) as introduced in Section 6.1 (for GU =
GU(n,n)). As an immediate consequence of Theorem 5.2.6 and Remark 6.1.1 applied to
Gk,ν,F , we obtain the following result.

Theorem 7.2.1. Let κ and κ′ be two weights satisfying the conditions of Proposition 5.2.6.
Then Gk,ν,F,κ ≡ Gk,ν,F,κ′ inside V ′N ′/pm+1V ′N ′

.

Proposition 7.2.2 below summarizes the relationship between the values at CM points (to-
gether with a choice of trivialization) of the p-adic automorphic forms obtained by applying
p-adic differential operators to Gk,ν,F and the values of C∞ automorphic forms obtained by
applying C∞ differential operators to Gk,ν,F .

Proposition 7.2.2. For each locally constant function F as in Theorem 7.1.1, the values of

Gk,ν,F,κ ∶= resΘκGk,ν,F and `
k⋅κ
can ○π∞κ⋅k ○ resDκ

k (C∞)Gk,ν,F , where π∞κ⋅k denotes the projection

onto an irreducible subspace of highest weight κ ⋅k, agree at each ordinary CM point A over
R (together with a choice of trivialization of ωA/R) up to a period.

Thus, as a consequence of Theorem 7.2.1, we can p-adically interpolate the values of `
k⋅κ
can ○

π∞κ⋅k ○ resDκ
k (C∞)Gk,ν,F (modulo periods) at ordinary CM points as κ varies p-adically.

Proof. The proof is similar to [Kat78, Section 5], [Eis15, Section 3.0.1], and [Eis14, Section
5.1.1]. �

Let χ = ∏w χw be a Hecke character of type A0. We obtain a p-adically continuous character
χ̃ on Xp, where Xp denotes the projective limit of the ray class groups of K of conductor

pr, as follows. Let χ̃∞ ∶ (K ⊗Zp)× → Q×
p be the p-adically continuous character such that

χ̃∞(a) = ıp ○ χ∞(a)
for all a ∈ K. So the restriction of χ̃∞ to (OK ⊗Zp)× is a p-adic character. We define a

p-adic character χ̃ on Xp by χ̃ ((aw)) = χ̃∞ ((aw)w∣p)∏w∤∞ χw(aw).

For each character ζ on the torus T and for each type A0 Hecke character χ = χu∣ ⋅ ∣−k/2
with χu unitary, we define Fχu,ζ(x, y) on (OK ⊗Zp)× × GLn (OK+ ⊗Zp) by Fχu,ζ(x, y) ∶=
χu(x)φζ(NK/E(x)ty) and extend by 0 to a function on (OK ⊗Zp)×Mn×n (OK+ ⊗Zp), with
φζ defined as in Equation (5.2.2.1).

Theorem 7.2.3. There is a measure µG′ (dependent on the signature of the group G′) on
Xp × T (Zp) that takes values in the space of p-adic modular forms on G′ and that satisfies

∫
Xp×T (Zp)

χ̃ψκµG′ = resΘκGk,ν,Fχu,ψ(7.2.0.4)

for each finite order character ψ and symmetric weight κ on the torus T and for each type

A0 Hecke character χ = χu∣ ⋅ ∣−k/2 of infinity type ∏σ∈Σ σ
−k ( σ̄

σ
)ν(σ) with χu unitary.

Equation (7.2.0.4) is analogous to [Kat78, Equations (5.5.7)], which concerns the case of an
Eisenstein measure for Hilbert modular forms. Theorem 7.2.3 also extends the main results
of [Eis15, Eis14] to arbitrary signature.

The idea of the proof is similar to the idea of the construction of analogous Eisenstein
measures in [Kat78, Eis15], i.e. it relies on the p-adic q-expansion principle.
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Proof. First, note that the measure µG′ is uniquely determined by restricting to finite order
characters on Xp × T (Zp) (by, for example, [Kat78, Proposition (4.1.2)]). Now, Equation
(7.2.0.4) follows from the p-adic q-expansion principle ([Hid05, Corollary 10.4]), as follows:
First, note that the p-adic q-expansion principle holds for all elements in V∞,∞, not just those

in V N . Now we apply the differential operators from Section 3.3.2 to the automorphic form
Gk,ν,Fχu,ψ on the general unitary group G of signature (n,n). So the resulting automorphic
form takes values in a vector space that is a representation of H. We project the image
onto an irreducible representation for H ′. So the pullback of this automorphic form to G′

is resΘκGk,ν,Fχu,ψ . Note that the action of differential operators on q-expansions is similar
to the action on Serre-Tate expansions, with the parameter (1 + t) replaced by q. (In each

case, it depends on the existence of a horizontal basis. See [Kat78, Corollary (2.6.25)] for
the case of Hilbert modular forms, which is extended to unitary groups of signature (n,n)
in [Eis12].) In particular, we see from Definition 5.2.9 and Corollary 5.2.10 that applying
Dκ
k and then projecting the image onto a highest weight vector results in multiplying each

q-expansion coefficient by the polynomial from Corollary 5.2.10. Equation (7.2.0.4) then
follows immediately from Remark 5.2.11 together with the abstract Kummer congruences
(see [Kat78, Proposition (4.0.6)]), i.e. the observation that for each integer m, whenever
a linear combination of the values of the product of characters on the left hand side is
0 modpm, then the corresponding linear combination of q-expansions of the automorphic
forms on the right hand side is also 0 modpm. �

As a consequence of Theorem 7.2.3 and Proposition 7.2.2, we see that for each ordinary CM

abelian variety A, we can p-adically interpolate the values of `
k⋅κ
can ○π∞κ⋅k ○ resDκ

k (C∞)Gk,ν,F
evaluated at A (together with a choice of trivialization of ωA/R).
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