EUREKA MATH ${ }^{2-}$

Lesson 15:

Represent data on a line plot.

CCSS Standard - 5.MD.B. 2

FLUENCY (15-min)

Sprint: Interpret

 Division as a FractionSPRINT: Write a division expression as a fraction, whole number, or mixed number. (PAGE 129)

1.	$1 \div 8$	$1 / 8$
2.	$4 \div 4$	1
3.	$5 \div 4$	$1 / 4$

I don't expect you to finish. Do as many problems as you can. Go for YOUR personal best. Take your mark. Get set. Think!

FLUENCY (15-min)

Sprint: Interpret

 Division as a FractionSprint A - Page 130

Sprint A $1_{\text {min }}^{1}$

STOP!!

Underline the last problem that you did.
I am going to read the answers. If you got it right, call out "Yes!" If you made a mistake, circle the answer.

Count the number you got correct and write the number at the top of the page.

THIS WILL BE YOUR PERSONAL GOAL FOR SPRINT B

Write the quotient for each expression. Use a whole number or mixed number when possible.

1.	$1 \div 2$	$\frac{1}{2}$
2.	$1 \div 3$	$\frac{1}{3}$
3.	$1 \div 8$	$\frac{1}{8}$
4.	$2 \div 2$	1
5.	$2 \div 3$	$\frac{2}{3}$
6.	$3 \div 3$	1
7.	$3 \div 4$	$\frac{3}{4}$
8.	$3 \div 10$	$\frac{3}{10}$
9.	$3 \div 5$	$\frac{3}{5}$
10.	$5 \div 5$	1
11.	$6 \div 5$	$1 \frac{1}{5}$
12.	$7 \div 5$	$1 \frac{2}{5}$
13.	$9 \div 5$	$1 \frac{4}{5}$
14.	$2 \div 3$	$\frac{2}{3}$
15.	$4 \div 4$	1
16.	$5 \div 4$	$11 \frac{1}{4}$
17.	$7 \div 4$	$1 \frac{3}{4}$
18.	$4 \div 2$	2
19.	$5 \div 2$	$2 \frac{1}{2}$
20.	$10 \div 5$	2
21.	$11 \div 5$	$2 \frac{1}{5}$
22.	$13 \div 5$	$2 \frac{3}{5}$

23.	$6 \div 2$	3
24.	$7 \div 2$	$3 \frac{1}{2}$
25.	$8 \div 8$	1
26.	$9 \div 8$	$1 \frac{1}{8}$
27.	$15 \div 8$	$1 \frac{7}{8}$
28.	$8 \div 4$	2
29.	$11 \div 4$	$2 \frac{3}{4}$
30.	$15 \div 2$	$7 \frac{1}{2}$
31.	$24 \div 5$	$4 \frac{4}{5}$
32.	$17 \div 4$	$4 \frac{1}{4}$
33.	$20 \div 3$	$6 \frac{2}{3}$
34.	$13 \div 6$	$2 \frac{1}{6}$
35.	$30 \div 7$	$4 \frac{2}{7}$
36.	$27 \div 8$	$3 \frac{3}{8}$
37.	$49 \div 9$	$5 \frac{4}{9}$
38.	$29 \div 6$	$4 \frac{5}{6}$
39.	$47 \div 7$	$6 \frac{5}{7}$
40.	$53 \div 8$	$6 \frac{5}{8}$
41.	$67 \div 9$	$7 \frac{4}{9}$
42.	$59 \div 6$	$9 \frac{5}{6}$
43.	$63 \div 8$	$7 \frac{7}{8}$
44.	$71 \div 9$	$7 \frac{8}{9}$

FLUENCY (15-min)

Sprint: Equivalent Fractions

Sprint A - Page 132
Take your mark. Get set. Improve!

Sprint B $\underbrace{1}_{\text {min }}$

STOP!!

Underline the last problem that you did.
I am going to read the answers. If you got it right, call out "Yes!" If you made a mistake, circle the answer.

Count the number you got correct and write the number at the top of the page.

Determine your improved score!
\qquad Write the quotient for each expression. Use a whole number or mixed number when possible.

1.	$1 \div 3$	$\frac{1}{3}$
2.	$1 \div 4$	$\frac{1}{4}$
3.	$1 \div 10$	$\frac{1}{10}$
4.	$5 \div 5$	1
5.	$5 \div 6$	$\frac{5}{6}$
6.	$3 \div 3$	1
7.	$3 \div 7$	$\frac{3}{7}$
8.	$3 \div 10$	$\frac{3}{10}$
9.	$3 \div 4$	$\frac{3}{4}$
10.	$4 \div 4$	1
11.	$5 \div 4$	$1 \frac{1}{4}$
12.	$2 \div 2$	1
13.	$3 \div 2$	$1 \frac{1}{2}$
14.	$4 \div 5$	$\frac{4}{5}$
15.	$10 \div 10$	1
16.	$11 \div 10$	$1 \frac{1}{10}$
17.	$13 \div 10$	$1 \frac{3}{10}$
18.	$10 \div 5$	2
19.	$11 \div 5$	$2 \frac{1}{5}$
20.	$13 \div 5$	$2 \frac{3}{5}$
21.	$4 \div 2$	2
22.	$5 \div 2$	$2 \frac{1}{2}$

FLUENCY (15-min)

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

Look at the fractional units.
Do they have LIKE units?
No! Are the units RELATED?
Yes! Which fraction can we
RENAME so the fractional units, or denominators, are the same?
$1 / 2$

FLUENCY (15-min)
 Whiteboard Exchange: Add Fractions

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

Look at the fractional units.
Do they have LIKE units?
No! Are the units RELATED?
Yes! Which fraction can we
RENAME so the fractional units, or denominators, are the same?

1/3

FLUENCY (15-min)
 Whiteboard Exchange: Add Fractions

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

Look at the fractional units.
Do they have LIKE units?
No! Are the units RELATED?
Yes! Which fraction can we
RENAME so the fractional units, or denominators, are the same?

3/4

FLUENCY (15-min)
 Whiteboard Exchange: Add Fractions

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

Look at the fractional units.
Do they have LIKE units?
No! Are the units RELATED?
Yes! Which fraction can we
RENAME so the fractional units, or denominators, are the same?

2/3

LAUNCH (10-min)

LEARN BOOK: PAGE 133 \& 134

SUN	MON	TUE	WED	THU	FRI	SAT
		1 $2 \frac{5}{8}$ miles	$\begin{aligned} & 2 \\ & 2 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 2 \frac{1}{2} \text { miles } \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 1 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$
$\begin{aligned} & 6 \\ & 1 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 2 \frac{5}{8} \text { miles } \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 1 \frac{1}{8} \text { miles } \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 1 \frac{1}{4} \text { miles } \end{aligned}$
$\begin{aligned} & 13 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 14 \\ & 1 \frac{3}{8} \text { miles } \end{aligned}$	15 2 miles	$\begin{aligned} & \hline 16 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ 2 \frac{3}{4} \text { miles } \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ 2 \frac{7}{8} \text { miles } \end{array}$	$\begin{aligned} & 19 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$
$\begin{aligned} & 20 \\ & 1 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 21 \\ 1 \frac{1}{8} \text { miles } \end{array}$	$\begin{aligned} & 22 \\ & 1 \frac{1}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 23 \\ & 2 \frac{5}{8} \text { miles } \end{aligned}$	24 $2 \frac{7}{8}$ miles	25 2 miles	26 $2 \frac{1}{2}$ miles
$\begin{aligned} & 27 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 28 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \frac{1}{8} \text { miles } \end{aligned}$			

What do you notice about the data?

- The distances are in miles.
- Most distances are mixed numbers
- The fractional units are halves, fourths, and eighths.
a. How many miles did Miss Song walk on the first - Monday of the month?
$2 \frac{1}{2}$
miles
b. What is the longest distance Miss Song walked?
$2 \frac{7}{8}$ miles
C. What is the shortest distance Miss Song walked?
$1 \frac{1}{8} \quad$ miles
d. On which day did Miss Song walk $1 / 3 /$ miles?

Friday the 4th

```
LAUNCH (10-min)
```

Discuss how to use data in a calendar to answer questions.

LEARN BOOK: PAGE 133 \& 134

SUN	MON	TUE	WED	THU	FRI	SAT
		1 $2 \frac{5}{8}$ miles	$\begin{aligned} & 2 \\ & 2 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 2 \frac{1}{2} \text { miles } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 1 \frac{3}{4} \text { miles } \end{array}$	$\begin{aligned} & 5 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$
$\begin{array}{\|l\|} \hline 6 \\ 1 \frac{1}{2} \text { miles } \end{array}$	$\begin{array}{\|l\|} \hline 7 \\ 2 \frac{1}{2} \text { miles } \end{array}$	8 $2 \frac{3}{4}$ miles	$\begin{aligned} & 9 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 2 \frac{5}{8} \text { miles } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ 1 \frac{1}{8} \text { miles } \end{array}$	$\begin{aligned} & 12 \\ & 1 \frac{1}{4} \text { miles } \end{aligned}$
$\begin{array}{\|l\|} \hline 13 \\ 2 \frac{3}{4} \text { miles } \end{array}$	$\begin{aligned} & 14 \\ & 1 \frac{3}{8} \text { miles } \end{aligned}$	15 2 miles	$\begin{aligned} & \hline 16 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 17 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 2 \frac{7}{8} \text { miles } \end{array}$	$\begin{aligned} & 19 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$
$\begin{array}{\|l\|} \hline 20 \\ 1 \frac{1}{2} \text { miles } \end{array}$	$\begin{array}{\|l\|} \hline 21 \\ 1 \frac{1}{8} \text { miles } \end{array}$	22 $1 \frac{1}{4}$ miles	$\begin{aligned} & 23 \\ & 2 \frac{5}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 24 \\ & 2 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 25 \\ & 2 \text { miles } \end{aligned}$	26 $2 \frac{1}{2}$ miles
$\begin{aligned} & \hline 27 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 28 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \frac{1}{8} \text { miles } \end{aligned}$			

e. How many days did Miss Song walk AT LEAST 1 1/4 miles?

23 days

f. Did Miss Song usually walk more or less than $13 / 4$ miles?

more

Were you able to find some answers more quickly than other? Which ones? Discuss.

Today, we will create line plots to represent data.

LEARN (25-min)

LEARN BOOK PAGE 134. (Interactive number line)

Use the data presented in the calendar to create a line plot.
First, let's discuss how the number line should look. What interval length (or unit) should we use? Why?

5-minutes: Work with a partner to plot all of Miss Song's distances.

SUN	MON	TUE	WED	THU	FRI	SAT
		$\begin{aligned} & 1 \\ & 2 \frac{5}{8} \text { miles } \end{aligned}$	$2 \frac{7}{8} \text { miles }$	$2 \frac{1}{2} \text { miles }$	$1 \frac{3}{4} \text { miles }$	$\begin{aligned} & 5 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$
$\begin{array}{\|l\|} \hline 6 \\ 1 \frac{1}{2} \text { miles } \end{array}$	$\begin{aligned} & 7 \\ & \hline 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \frac{5}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 11 \\ & 1 \frac{1}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \frac{1}{4} \text { miles } \end{aligned}$
$\begin{aligned} & 13 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	14 $1 \frac{3}{8}$ miles	$\begin{array}{\|l\|} \hline 15 \\ 2 \text { miles } \end{array}$	$\begin{aligned} & 16 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 17 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 18 \\ & 2 \frac{7}{8} \text { miles } \end{aligned}$	19 $2 \frac{1}{2}$ miles
$\begin{array}{\|l\|} \hline 20 \\ 1 \frac{1}{2} \text { miles } \end{array}$	$\begin{aligned} & 21 \\ & 1 \frac{1}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 22 \\ & 1 \frac{1}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 23 \\ & 2 \frac{5}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 24 \\ & 2 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 25 \\ & 2 \text { miles } \end{aligned}$	$\begin{aligned} & 26 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$
$\begin{aligned} & 27 \\ & 2 \frac{1}{2} \text { miles } \end{aligned}$	$\begin{aligned} & 28 \\ & 2 \frac{3}{4} \text { miles } \end{aligned}$	$\begin{aligned} & 29 \\ & 1 \frac{7}{8} \text { miles } \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \frac{1}{8} \text { miles } \end{aligned}$			

LEARN (25-min)

Create a line plot.

Distances Walked by Miss Song

TITLE

$0 \quad 1 \quad 1 \frac{1}{8} 1 \frac{1}{4} 1 \frac{3}{8} 1 \frac{1}{2} 1 \frac{5}{8} 1 \frac{3}{4} 1 \frac{7}{8} \quad 2 \quad 2 \frac{1}{8} 2 \frac{1}{4} 2 \frac{3}{8} 2 \frac{1}{2} 2 \frac{5}{8} 2 \frac{3}{4} 2 \frac{7}{8} \quad 3$
Distance (miles)

Does your line plot match this one?

What is the most frequent distance Miss Song walked?

$2 \frac{1}{2}$ miles

I. How many miles did Miss Song walk on the third Saturday of the month?
$2 \frac{1}{2} \quad$ miles
i. What is the difference, in miles, between the longest and shortest distance Miss Song walked?

$1 \frac{6}{8}$ miles

K. How many days did Miss Song walk less than 2 miles

10 days

Must include information about what the numbers mean!

Eddie tracks how far he walks each day for 10 days. The distances shown are in miles.

Day	1	2	3	4	5	6	7	8	9	10
Distance (miles)	$1 \frac{1}{4}$	$\frac{1}{2}$	1	$2 \frac{3}{8}$	$1 \frac{1}{4}$	$2 \frac{1}{4}$	2	$2 \frac{1}{4}$	$2 \frac{1}{2}$	$\frac{7}{8}$

1. Create a line plot for the data shown in the table. Title and label the line plot. Then plot the data.

Exit Ticket - PAGE 137

Small Group Time:
Problem Set Page 135-136

Homework:

Page 101 APPLY BOOK
2. Eddie says he usually walks at least 1 mile each day. Is that a correct statement? Why?

