
Math 6345 - AODEs

Ordinary Differential Equations Review - Part 2

1 Linear Systems

A linear system of equations

dx
dt

= ax + by,
dy
dt

= cx + dy, (1)

can be can be written as a matrix ODE

dx̄
dt

= Ax̄ (2)

where x̄ =

(
x
y

)
and Ā =

(
a b
c d

)
. If we consider solutions of the form

x̄ = c̄eλt,

then after substitution into (2) we obtain

λc̄ eλt = A c̄ eλt

from which we deduce

(A− λI) c̄ = 0. (3)

In order to have nontrivial solutions c̄, we require that

|A− λI| = 0. (4)

This is the eigenvalue-eigenvector problem. If

A =

(
a b
c d

)
then (4) becomes

λ2 − TrAλ + DetA = 0,

where TrA = a+ d and DetA = ad− bc. When solving for λ we have three possible cases:

1. two distinct eigenvalues

2. two repeated eigenvalues,

3. two complex eigenvalues.
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Here we consider an example of each

Example 1 If
dx̄
dt

=

(
1 1
2 0

)
x̄ (5)

then the characteristic equation is∣∣∣∣ 1− λ 1
2 −λ

∣∣∣∣ = λ2 − λ− 2 = (λ + 1)(λ− 2) = 0,

from which we obtain the eigenvalues λ = −1 and λ = 2.

Case 1: λ = −1

From (3) we have (
2 1
2 1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding 2c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−2

)
.

Case 2: λ = 2

From (3) we have (
−1 1

2 −2

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding c1 − c2 = 0 and we deduce the eigenvector

c̄ =
(

1
1

)
.

The general solution to (10) is then given by

x̄ = c1

(
1
−2

)
e−t + c2

(
1
1

)
e2t.

Example 2 If
dx̄
dt

=

(
1 −1
1 3

)
x̄ (6)

then the characteristic equation is∣∣∣∣ 1− λ −1
1 3− λ

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2 = 0,

from which we obtain the eigenvalues λ = 2, 2.
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1st solution: λ = 2

From (3) we have (
−1 −1
2 1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−1

)
.

and our first solution is

x̄1 =

(
1
−1

)
e2t.

2nd solution: We seek a solution of the form

~x2 = ~u t eλt +~veλt (7)

Substitution into (6) leads to the following

(A− λI)~u =~0 (8a)

(A− λI)~v = ~u (8b)

The first we already calculated which is~c above. For the second we have(
−1 −1

1 1

)(
v1
v2

)
=

(
1
−1

)
,

which leads to−v1− v2 = 1 which we choose v1 = 0, v2 = −1 giving our second solution

as

~x2 =

(
1
−1

)
t e2t +

(
0
−1

)
e2t (9)

and the general solution

x̄ = c1

(
1
−1

)
e2t + c2

[(
1
−1

)
t +
(

0
−1

)]
e2t.

Example 3 If
dx̄
dt

=

(
3 −2
5 1

)
x̄ (10)

then the characteristic equation is∣∣∣∣ 3− λ −2
5 1− λ

∣∣∣∣ = λ2 − 4λ + 13 = 0,

from which we obtain the eigenvalues λ = 2± 3i. In the case of complex eigenvalues

where λ = α± βi, the eigenvectors we be complex, say ~u = ~R±~I i and the two indepen-

dent solutions are

~x1 =
[
~R cos βt−~I sin βt

]
eαt

~x2 =
[
~I cos βt + ~R sin βt

]
eαt.

(11)
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Substituting λ = 2 + 3i into (3) with a = 3, b = −2, c = 5 and d = 1 gives(
1− 3i −2

5 −1− 3i

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain (1− 3i)c1 − 2c2 = 0 and choosing c1 = 2, c2 = 1− 3i or(
c1
c2

)
=

(
2
1

)
+

(
0
−3

)
i,

from which we identify that

~R =

(
2
1

)
, ~I =

(
0
−3

)
,

and through (11) we obtain

~x1 =

[(
2
1

)
cos 3t−

(
0
−3

)
sin 3t

]
e2t

~x2 =

[(
0
−3

)
cos 3t +

(
2
1

)
sin 3t

]
e2t.

(12)

and a linear combination gives the general solution as

~x = c1

(
2 cos 3t

cos 3t + 3 sin 3t

)
e2t + c2

(
2 sin 3t

−3 cos 3t + sin 3t

)
e2t (13)
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