
IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 731 | P a g e

Design and Implementation of Crawler based on Query

Parameter and Categorization
Kavita Goel1, Dr. Jay Shankar Prasad2, Dr. Saba Hilal3

1Research Scholar, Dept of Computer Science, MVN University, Palwal, India
2Dept of Computer Science & Engg., MVN University, Palwal, India

3http://sabahilal.blogspot.in/

Abstract - Web is the ocean of information and it is common

to get knowledge from the web. Finding useful and relevant

information from the web is always challenging. A User

gives query through a search engine which uses a crawler to

fetch desired results. Crawler creates the database for the
search engine by extracting links from the web. Finding

useful information from the web have challenges of page

refreshment, aging problem, crawling multimedia content,

and duplicate links. Removing duplicate URL is important as

different URL with same content increases crawling time and

space to store links in the database. These are some hurdles in

getting desired and relevant results from the web crawler.

This work studies previous approaches of designing and

optimizing crawler’s performance and designs new crawler

based on the idea of removing duplicate URLs in crawling.

The concept is implemented using URL normalization and

categorization. Removing duplicate URLs during crawling
will improve crawler’s performance and hence whole

searching process.

Keywords - Web crawler, URL normalization ,

categorization.

I. INTRODUCTION

In today’s era of Information, everyone is desired to get

information. The requirement of information differs from

person to person but the source of information is common to

all i.e. World Wide Web. It is the deep sea of information

which contains information from all the domains but the
information is spread across the sea. In order to get the

preferred information some tools are required and Search

engine is the most commonly used tool. It is an interface used

by the end user to get the desired result. Search engine uses

software called crawler or bot to get particular information

from web. Crawler [7] crawl the web in order to give

required results to search engine which in turn are served to

end users. End-user demands that results are relevant and it

should not contain duplicate URLs. A large number of URLs

on the web are duplicates and it affects all functions of search

engine including crawling, indexing and serving [6]. De-

duping of URL is a big challenge [6]. Although many
researchers have work in this field and results are better. But

only few researchers have work in the area of removing

duplicity at crawling level. In [1], multiple alignment

sequence algorithm with URL normalization in order to

optimize the links has used. In [3], a method based on

decision tree and machine algorithm to generate rules which

in turn are used with URL normalization for deduplication of

web page is used. It defines general set of rules for

tokenization of URLs which are used to extract tokens for

normalization of URL. In [2], a new algorithm for Naïve

Baise Classifier which is used for classification of web
crawler is merged with URL scoring algorithm to improve

the feat of system. In [5], certain rules are defined to mine

DUST from crawl logs without checking content of web

page. In [6],a framework is designed to observe the common

patterns of URLs on web. These rewrite rules remove

duplicate URLs which will occur first time for crawling

without retrieving the content.

This paper design crawler based on URL normalization and

categorization to optimize crawler’s performance and search

results.

The paper has been organized as follows. Section two
Discuss previous works to Design and optimize crawler’s

performance. Section three discuss Design and Flowchart of

New crawler. Section Four gives the implementation of

crawler with an illustration. Section five concludes.

II. RELATED WORKS

Various soft computing approaches have been proposed to

optimize the focused crawler. In [8] Banu Wirawan Yohanes

et al. proposes genetic algorithm to improve the performance

of focused web crawler. The Genetic algorithm works in four

steps. The first step is initialization in which various

parameters of the genetic algorithm are initialized. Seed set is
given to the Crawler; it fetches the page from URL and stores

it. In the second phase, Jaccard similarity is used to measure

the fitness of a web page. In the third phase, out links of the

web page are extracted and most suitable links are put into

the crawling queue. In last phase it applies mutation based

search, some keywords are selected and run a query on search

engines. The filtering rate of GA crawler is better than BFS.

In [9], Sotiris Batsakis et al. uses HMM (hidden Markov

Model) through the combination of web page content and

link anchor.HMM is a learning crawler and it works on user

inputs to indicate whether the downloaded page is relevant or
not. It records the sequence and it is used by the crawler to

find relevant pages. It compares some crawlers with 10

selected topics and HMM model improves the performance

of resulting focused web crawler and gives better results.

They observe crawling pattern and try to find relevant pages

through other non-relevant pages which increase the chances

of failure.

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 732 | P a g e

In [10], Brieshwar Devarish et al. used semantic content to

assign a number to web pages. It partitions the web page into

content block based on hierarchical structure.

In [11], Junghoo Cho, Hector Garcia-Molina defines a

parallel crawler as a crawler which uses multiple processes in

parallel to improve the basic crawling process. This paper
focuses on various issues of parallel crawling by proposing

architecture and then proposes a metrics to evaluate a parallel

crawler.

It implements crawlers in different modes. Firewall mode

provides good coverage but it will not work for more than 4

processes at the same time. Crawler- based on exchange

mode requires less bandwidth and maximize the quality of

downloaded pages. But retrieving and comparing signatures

of web documents was proposed knows as Spotsigs. In [4],

exchange mode (replication) does not work well for more

than 10,000 URLs.

In [12], Mauricio Marin et al. focused on efficient
Management of URLs and synchronization issues. The set of

new URLs are organized on the basis of priority measure.

The URLs with high priority are downloaded first.

For efficient management of URLs, two priority Queues are

used. One is based on complete binary tree and it achieves

optimal performance in multi-core processor and the second

one is suitable for effective utilization of secondary memory.

In [14], Vladislav Shkapenyuk, Torsten Suel describes the

implementation of the optimized system on a network of

workstations. It presents the architecture to solve the issues of

scalability and to achieve higher efficiency. To achieve this,
it uses breadth - first crawler. Although it is a scalable

structure still it requires detail study of scalability and

behaviour of its component.

In [15], Xiaochen Zhang et al. optimize distributed crawler

under Hadoop platform. The working efficiency is optimized

by increasing the number of Initial URLs, by improving the

fetching process and by improving certain parameters.

Performance optimization is done through parameters

modification and it is a feasible scheme. But it does not

improve the efficiency of fetching and indexing process.

In [16], Kevin S. McCurley defines incremental crawling as

the process of revisiting and prioritizing URLs. The main
issue in incremental crawling is defining metrics for

performance, for maintaining the quality of database and

resources required to build and maintain the database.

Incremental crawling depends upon polling, so it is

inefficient. Notification and invalidation is an efficient

approach but there is some economic expense to implement

them.

In [17], Kevin McCurley, Jenny Edwards describes an

adaptive approach for optimizing the performance of scalable

and incremental web crawler. It optimizes the performance

by identifying obsolete pages. In adaptive approach, it used
information in the metadata of the page and when that page is

crawled, it records whether a page is changed since the last

crawl or not. The frequently changed pages are stored in the

separate basket. It is two- stage adaptive models, within a

crawler cycle it coordinates the management of URL and

between cycle data necessary for the optimization is updated

for the future cycle. In future, it can be implemented at large

scale.

In [18], M.E.ElAraby et al. improve crawler efficiency in

collecting web pages by using available resources. It uses

Alchemi tool to implement crawler with grid computing.
Using grid computing increases crawler performance. The

architecture is based on parallel and distributed computing

where tasks are divided into subtask in order to achieve

maximum resource utilization and save time. Crawler

performance can be enhanced by increased by increasing the

number of executor nodes. In future crawler will be

implemented which will update collected web pages.

In [19], Fengyun Cao et al. mentioned that speed and quality

of webs pages are two important factors in optimizing

crawler performance. Work is done by using scheduling

algorithm to balance both the factor and optimize global

crawl efficiency. It defines crawl-ability as the new ranking
metric which combines performance and quality factors into

scheduling decision-making.

Implementation is done with a real web crawler and tests four

scheduling algorithm. Crawl-ability scheduling algorithm

calculates aggregation of page quality based using algebraic

summation. But it does not reflect the total value of the set of

web pages where page qualities are dependent on each other.

III. DESIGN OF CRAWLER
In this paper, a crawler is designed which is based on the
URL normalization and Categorization.URL normalization is

applied in the query parameter of URL and categorization is

applied at the level of crawling and searching. Categorization

during crawling crawls only in particular category which

helps to provide only relevant results and normalization

reduces duplicate parameters. The proposed crawler shown in

the “Fig.1.” given below is basically working on reducing

duplicate URLs in the crawl process.

Fig1: Proposed architecture of Web crawler

The above architecture of proposed crawler is based on

basically duplicity removal. The general process starts with

seed URL .Crawler gets the seed URL and starts the process

of crawl a URL after fetching a URL and parsing a web page,

crawler gets the next URL to be visited. Here is the role of

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 733 | P a g e

URL normalization begins. Instead of adding each URL to

the list of unvisited URLs i.e. to the URL frontier a duplicity

detection method has been implemented in the architecture of

crawler. The module is URL eliminator which checks next

URL to be crawled for duplicity. If the URL passes the test it

will be added to the list of unvisited URL otherwise, it will be
rejected.

URL similarity test: When crawler gets new URL for

crawling it first checks its equality. If URL is equal to already

crawled URL then it will not be crawled again, if URL is not

equal to previous URL then domain similarity and query

parameter will be applied on the URLs. Domain similarity is

the criteria of URL normalization which states that if

two URLs have same domain and different query string then

they may lead to same page. In order to detect these URLs, If

two URLs have same domain then rules of URL

normalization are applied to Query string and new generated
string will be compared with already existing string. If after

applying rules, two strings matches then URLs will be treated

same and one URL will be deleted.

FETCH: The fetch module is initiated by seed URL. Crawler

is given seed URL or initial URL. Crawler fetches the web

page correspond to seed URL and extracts hyper links from

web page. These hyperlinks are link next to be visited.

DNS: (Domain Name Server):Domain name server converts

domain name like .com .org into its IP address. Domain name

are identified by human being but Computer works on the

binary values. So DNS server converts particular Domain
name in IP address so that it is recognizable by computer.

Parsing: It is the process of separating text and hyperlinks.

After web page is fetched parsing is done in order to separate

text from web links. Pages are stored separately and links are

stored at one place so that they can be crawled in next cycle.

URL filters: There are set of rules that define web pages not

to be crawled which are stored in a file called robot.txt. After

fetching the page, URLs are checked in Robot.txt file.

URL Eliminator: Before adding URL to the URL frontier

URL eliminator scans the URL on the basis of URL equality

and URL normalization.URL equality checks that whether

URL requested is equal to already crawled URL. If two
URLs are equal then it is not added second time. After

applying URL equality it applies URL normalization which

states that syntactically different URLs are actually same or

not.

URL Frontier: If two URLs are different in all aspects then

it is added to the URL frontier.URL frontier contains links

which are to be visited next.

WWW is World Wide Web of documents from where

documents will be fetched. Fetch module will extract web
page from the web and after that parsing will be done.

Parsing involves separation of text from URLs. After the web

page is extracted text and Links are separated. The Text is

stored separately and links are processed further for crawling.

After that links are passed through URL filter for checking

robot.txt file. After that URL will be checked for duplicity.

Duplicity will be checked on the basis of URL normalization

and categorization. If URL passes the test of duplicity then it

will be added to the URL frontier for crawling in the next

cycle. The Same cycle will repeat for all the URLs in the

Frontier.
Process flow of Crawler is shown in the “Fig.2.” given

below:

A. Process Flow of Crawler

Step1: The process of Crawling will begin with user input.

The User will enter seed URL and desired category in which

URL is to be crawl. In proposed crawler, we have defined 10

categories for an experiment. However, it is not limited to 10

and number of categories can be added as per requirement.

Step2: After getting seed URL and category to crawl, the

crawler will check that whether seed URL retrieves a web

page or not. If it is not a web page, it will return an error

message and stop the processing.

Step3: If the seed URL results in a valid webpage then

Crawler will execute URL normalization process.

During URL normalization first we saved the name of

website and website link into T_WEBSITE table with a

unique website id (WSID) And entire URL will be

temporarily stored in the table T_TEMPWEBPAGE for

Further use with uniqe URLID value.

a) Next step in URL normalization process is to remove
Http and https from URL as both schemes direct to the

same web page.

b) Next, it will check that whether URL consists of

index.html, default.html, and start.html. If these

extensions are present then they will be removed from

the URL as all these extensions lead to the same web

page. In the above example, there is no such extension so

URL will remain same.

c) After removing extensions it will remove port value

80,443. Value 80 is used with Http protocol and 443 is
used with https. Both represent the same webpage so it

will be removed. Next, it will remove .com from URL

d) Next, it will remove ‘..’ and ‘.’ From URL Double slash

will be converted to single slash

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 734 | P a g e

Return an error

 Call Write To Dbase(ARG); To enter
values in the table dbo.T_WEBSITE

Begin Do While Loop

 Call Write To Dbase(ARG);To enter values
in the table dbo.T_TEMPWEBPAGE.

Remove Http and https

Remove default.aspx,index.html & start.html

Start

Enter seed URL and category

Is web page
(Arg)

Sort text(ARG)

Remove duplicate text value

ARG)

Remove dots and slash values

Remove port 80,443 and empty value

Remove .com and .co.*

Remove empty parameter(ARG)

Remove social query parameter (ARG)

Store normalize url in norm_URL
For i=0; i<=n; i++

Compare

norm_URL=

=T_tempUrl(

i)

Delete

from

T_TEMP

WEBPAG

E

Call Write To Dbase(ARG);To enter

values in the table dbo.T_TEMPURL

M_strtitle(title)(ARG)

M_strmetadescription=metadescription (ARG)

M_strmetakeyword=metakeyword(ARG)

M_strmetitle= metatitle(ARG)

M_str image= Alttext(ARG)

M_str Body= Body(ARG)

Write the value of WSID from dbo.T_WEBSITE to

dbo.T_WEBAPGE

 Call Write To Dbase WP(ARG);To enter

values in the table dbo.T_WEBPAGE

 Call Parse page for other pages(ARG);

While(m_sPages!=NULL)

Call Write To Dbase(ARG);To enter
values in the table dbo.T_WEBPAGE

from T_TEMPWEBPAGE

BreakdownURL(ARG)

GetWebtext(ARG)

Delete all content from
T_TEMPWEBPAGE and T_TEMPURL

Stop

Fig.2: Process Flow of Crawler

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 735 | P a g e

After applying rules of URL normalization on different parts

of URL, next step is to normalize the query string of URL.

Below functions will be used to normalize query string :

e) Sort Text (ARG). There can be more than one query

parameter in a URL. In order to normalize a URL it is
necessary to arrange the query parameter in a particular

order. This arrangement is achieved by sorting the

parameters. Parameters are sorted alphabetically and URL

is reassembled. For sorting the query parameter, Selection

sort is applied

f) Remove duplicate text Value (ARG): After sorting

query parameter, the duplicate parameter will be removed

from the URL. If the value of one key/pair is equivalent to

other key/pair then one will be removed.

g) Remove empty Query Parameter (ARG): Once
duplicate parameters are removed, the next step is to remove

empty parameters and from URL. It will remove BLANK

values but 0 will be considered as a value.

h) Remove Social Query parameter: After sorting,

removing duplicate values, removing an empty parameter, the

social parameter will be removed.

After applying steps URL will be normalized and it will be

stored in a string variable called norm_URL.

Step4: T_TEMPURL table in the database is used to store all

unique normalized URL of a particular website (WSID). To

check the uniqueness norm_URL value is compared with all

others URLs stored in T_TEMPURL table. Since the two

URLs are not same it will go to step 5. If two URLs are same

then the URL will be removed from T_TEMPWEBPAGE, as

it is a duplicate URL and control will be transferred to get the

new page from the website for crawling.

Step5: If two URLs are not same then it will be stored in table

T_TEMPURL.

Step6: The value of Original URL that was saved in

T_TEMPWEBPAGE will be copied in T_WEBPAGE table.

T_WEBPAGE table stores different information in different

fields like URL will be stored in the field WPURL of

T_WEBPAGE table.

Step7: URL will be broken into different parts using Break

down URL (ARG) function. This function will accept URL as

an argument and it will break the URL into Parts, It will

separate, scheme, host, path and query string. Host part

determines the web address of the page to be open.

Step8: Get Web text (ARG): After separating different parts of

the URL, Crawler will retrieve text from the URL.

Step9: Title of the webpage will be stored in the variable

called M_strtitle.

Step10: metaTitle of the Web page will be stored in a variable

called M_strmetatitle.

Step11: metaKeyword of the Web page will be stored in a

variable M_strmetakeyword.

Step12: metadescription of the Web page will be stored in

variable M_strmetadescription.

Step13: Body text of Web page will be stored in the variable

M_str body.

Step 14: Information about images will be stored in M_str

image.

Step 15:After storing information in different variables it will

be stored in table dbo.T_Webpage. The Title will be stored in

field WPTITLE. Meta Title will be stored in field

WPMETATITLE. Meta keyword will be stored in table
WPMETAKEYWORD. Meta description will be stored in

WPMETADESCRIPTION. The Body text of Web page will

be stored in field WPHTMLWITHOUTTAGS. Website Id

will be obtained from field WSID of T_WEBSITE and it will

be stored in WSID of T_WEBPAGE.WSID is the connecting

key between two tables (T_WEBSITE and T_WEBPAGE).

Step16: After storing page in table T_WEBPAGE , the

crawler will get next link of the website to crawl and the

process will continue until it crawls all the links of the

website.

Step17: After crawling is completed for all the pages of the

website, it will remove data from temporary table

T_TEMPWEBPAGE and T_TEMPURL. This is how we are

removing duplicity in a particular website based on query

string parameter during crawling.

IV. IMPLEMENTATION OF CRAWLER

A. Frontend of Crawler

There are two parts of the crawler: Frontend of crawler and

Backend of the crawler. The Frontend of the crawler is
implemented using dot net framework and Visual Studio 2012.

B. Backend of Crawler

The Backend of the crawler is implemented by created tables
in SQL Server management studio 2008 R2.

Five tables (T_WEBSITE, T_WEBPAGE, T_CATEGORY,

T_TEMPWEBPAGE, T_TEMPURL) are used to implement

and store URLs crawled by the crawler. Brief descriptions of

the tables are summarized below:

1) T_WEBSITE

This table will be used to store information about Website

name. Three fields are used in the table to store information:

WSID, WSNAME, and WSLINK.

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 736 | P a g e

WSID: This is a unique field and contains the order of website

in which it will be crawled.

WSNAME: It will contain the name of the Website.

WSLINK: It will contain URL of Website.

2) T_WEBPAGE

This table holds all the information of Web page of Website.

Eleven fields are used in the table to store information. WPID,

WSID, WPTITLE, WPMETATITLE, WPMETAKEYWORD,

WPMETADESCIPTION, WPCATERORY,

WPEXTENSION, WPURL, WPFULL HTML,

WPHTMLWITHOUT TAGS.

WPID: This field will contain the ID of the page that will be

crawled.

WSID: This field will contain the ID of the website and it will

retrieve a value from T_WEBSITE table. This is the

connecting key between the two tables.

WPTITLE: It will contain Title of a webpage.

WPMETATITLE: It will contain meta title of the web page.

WPMETAKEYWORD: All the meta keywords of a page will

be extracted and will be stored in this field.

WPMETADESCRIPTION: Meta description of a page will be

stored in this field.

WPCATEGORY: It will retrieve category number from CTID

of dbo.T_CATEGORY table. CTID is the connecting key

between two tables.

WPEXTENSION: It will contain extension of page i.e. .com,

org.

WP URL: It will contain web page of a URL.

WP FULL HTML: It will contain full HTML of a page.

WPHTMLWITHOUTTAGS: It will contain full HTML.

3) T_CATEGORY

This table contains information about category in which

crawler will crawl a URL. Whole information will store in two

fields i.e. CTID and CTNAME.

CTID: It will contain ID number of category and

CTNAME: It will contain the name of the category.

4) T_TEMPWEBPAGE

This table will contain URL temporarily. Here URL will be

stored for processing. After processing either URL will be

deleted from the table or it will be moved to T_WEBPAGE
table. This table will contain WSID, WPID , and WPURL.

WSID: It will retrieve the value from T_WEBSITE and it will

contain website Id.

 WPID: It will store the ID of page that will be crawled.

 WPTURL: This field will contain actual URL to be crawled.

5) T_TEMPURL

This table will store normalize form of URL at every stage.

After applying the entire rules table will store final URL

which will be used for comparison with other URLs. This

table will store information in two fields i.e. WPID and

Norm_URL.

WPID: It will retrieve the value from WPID of

T_TEMPWEBPAGE.

Norm_URL: It will contain entire normalized URL of the

website for comparison.

C. Illustration of the crawling process

A User wants to crawl educational website

http://www.abc.com then it will be treated as seed URL.URL
will be entered in the field website and category will be

selected from the drop-down website

Category in the interface of the crawler. After that User will

click crawl button and crawling will start.

The Crawler will start its process by entering values in

T_WEBSITE table in the database for seed URL

http:.//www.abc.com.

WSID: So a unique value will be assigned to this field based

on the previous values.

WSNAME: It will contain hostname of website i.e. abc.

WSLINK: It will contain actual link i.e. http://www.abc.com.
Suppose first URL encounter is

http://www.abc.com:80/../a/b/./c?d=1&e=3&f=4&D=2&f=4

&g=0&h=?
After this value will be entered in T_TEMPWEBPAGE table.

WSID: It will store same value as in dbo.T_WEBSITE.

WPID: It will contain page id of URL retrieve from seed

URL. Here URL is

http://www.abc.com:80/../a/b/./c?d=1&e=3&f=4&D=2&f=4

&g=0&h=? and page id of URL is supposed to be 12. So, it

will hold the value 12.

WPURL: It will contain actual URL:

http://www.abc.com:80/../a/b/./c?d=1&e=3&f=4&D=2&f=4

&g=0&h=?

a) From the above URL http will be removed and resulting

URL will be

www.abc.com:80/../a/b/./c?d=1&e=3&f=4&D=2&f=4&g=0&

h=?

b) After removing 80 from above URL, resulting URL will be

www.abc.com/../a/b/./c?d=1&e=3&f=4&D=2&f=4&g=0&h=?

c) After removing index.html and.com resulting URL will be

www.abc/../a/b/./c?d=1&e=3&f=4&D=2&f=4&g=0&h=?

http://www.amity.com/
http://www.abc.com/
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity.com/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 737 | P a g e

d) After removing ‘.’ And ‘..’ resulting URL will be:

www.abc/../a/b/./c?d=1&e=3&f=4&D=2&f=4&g=0&h=?

e) After applying sort function resulting URL will be:

www.abc/a/b/c?d=1&d=2&e=3&f=4&f=4&g=0&h=?.

f) Remove duplicate values and URL will be:

www.abc/a/b/c?d=1&d=2&e=3&f=4&g=0&h=?.

g) Remove empty parameter and URL will be:

www.abc/a/b/c?d=1&d=2&e=3&f=4&g=0.

This normalized URL will be compared with other URLs

saved in TEMP_URL table. If the URL is unique it will be

saved otherwise it will be deleted from TEMP_WEBPAGE.

Suppose it is a unique URL then entries in all the table will be

at this particular time will be:

T_WEBSITE

WSID WSNAME WSLINK

1 abc
http://www.abc.com

T_TEMPWEBPAGE
WSID WPID WPTURL

1 12
http://www.abc.com:80/../a/b/./

c?d=1&e=3&f=4&D=2&f=4&g=0&h=?

T_TEMPURL

WPID NORMURL

12 www.abc/a/b/c?d=1&d=2&e=3&f=4&g=0.

T_WEBPAGE

WPID WSID WP

CATE

GORY

WP

TITLE

WP

META

TITLE

WP META

KEYWORD

WP

META

DESCRI

PTION

WP

EXTEN

SION

WP URL WP FULL

HTML

WP HTML

Without

tags

12 1 1
abc.

com

abc

education

school

college

No.1

college
.com

http://www.

abc.com:80/..

/a/b/./c?

d=1&e=3

&f=4&D=2

&f=4

&g=0&h=?

V. CONCLUSION AND FUTURE WORK
The crawler is designed to perform the categorization in

crawling and URL Normalization on query parameter to

remove duplicates URLs during crawling. The crawler is

designed with the idea of removing duplicate URLs during

crawling to improve the performance of crawler. In future

Crawler can be extended to include automated categorization

during crawling.

The proposed crawler compares a particular website only once

and it allows re-enter the website again. For e.g. Suppose

crawler receives the seed URL http://www.abc.com. For the
first time of crawling, the crawler will crawl all the URLs of

the website and will not enter duplicate URLs. But after some

time if user re-enters the same website, it will again enter it

into the database without checking that URLs are already

entered. In future mechanism can be devised to check, if user

enters the same URL then, crawler renter only those pages

which are updated and ignore the rest. Also, it should keep the

only updated page and remove the previous one.

VI. REFERENCES
[1]. Rodrigues, K , Cristo,M, de Moura, E. S. and Silva da, A(2015),

"Removing DUST Using Multiple Alignment of
Sequences," IEEE Transactions on Knowledge and Data
Engineering, volume. 27,Issue 8, pp. 2261-2274.

[2]. Theobald, M , Siddharth, J. and Paepcke, A (2008), “Spotsigs:
Robust and efficient near duplicate detection in large web
collections”, Proceedings of 31st Annual International ACM

SIGIR Conference on Research and development in information
retrieval, Singapore, pp. 563–570.

[3]. Agarwal, A, Koppula, H.S, Leela, K.P, Chitrapura K.P, Garg S.,
GM P.K., Hatty C, Roy, A and Sasturkar, A(2009) “Url
normalization for de-duplication of web pages”, Proceedings of
the 18th ACM conference on Information and knowledge
management, Hongkong: China, pp.1987–1990.

[4]. Taylan, D, Poyraz, M, Akyokuş, S and. Ganiz, M. C. (2011),

"Intelligent focused crawler: Learning which links to crawl,"
International Symposium on Innovations in Intelligent Systems
and Applications, Istanbul, pp. 504-508.

[5]. Bar-Yossef , Z. , Keidar I. and Schonfeld, U.(2009), “Do not
crawl in the dust: Different urls with similar text”, ACM
Transactions on the Web, volume. 3.

[6]. Dasgupta, A, Kumar, .R and Sasturkar, A.(2008), “De-duping
urls via rewrite rules”, Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data

mining, USA: Las Vegas, pp.186–194.
[7]. Olston, C and Najrok,M (2010), “Web Crawling”, Foundations

and Trends in Information Retrieval, volume .4, pp.175-246.
[8]. Yohanes, BW, Handoko,H and Wardana, HK (2011) , “Focused

Crawler Optimization Using Genetic Algorithm”,
TELKOMNIKA, volume. 9, pp. 403-410.

[9]. Batsakis, S, Petrakis, E G.M. and Milios, E (2009), “Improving
the Performance of Focused Web Crawlers”, Data and

Knowledge Engineering, volume 68, pp. 1001-1003.
[10]. Ganguly, B and Raich, D(2014), “Performance Optimization of

Focused Web Crawling Using Content Block Segmentation”,
International Conference on Electronic Systems, Signal
Processing and Computing Technologies, Nagpur, pp. 365-370.

[11]. Cho, J and Garcia-Molina, H(2002), “Parallel Crawlers”,
Proceedings of the 11th International Conference on World Wide
Web, USA: Hawaii, pp 124-135.

[12]. Marin, M. Paredes, R and Bonacic , C(2008) , “High-
Performance Priority Queues for Parallel Crawlers”,
Proceedings of the 10th ACM workshop on Web information
and data management, USA: Napa Valley, California, pp. 47-54.

[13]. Olston, C and Najrok, M (2010), “Web Crawling”, Foundations
and Trends in Information Retrieval, volume .4, pp.175-246.

http://www.amity/a/b/c?d=1&e=3&f=4&D=2&f=4&g=0&h
http://www.amity/a/b/c?d=1&d=2&e=3&f=4&f=4&g=0&h=?.%20
http://www.amity/a/b/c?d=1&d=2&e=3&f=4&g=0&h=?.%20
http://www.amity/a/b/c?d=1&d=2&e=3&f=4&g=0.%20
http://www.abc.com/

IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 738 | P a g e

[14]. Shkapenyuk, V and Suel, T (2002),"Design and implementation
of a high-performance distributed Web crawler," in Proceedings
of the 18th International Conference on Data Engineering, San
Jose, CA, pp. 357-368.

[15]. Xiaochen , Z and Xian , M (2015), “Optimization of Distributed

Crawler under Hadoop”, MATEC web of conferences:
International Conference on Engineering Technology and
Application.

[16]. McCurley, KS., “Incremental Crawling”, Encyclopedia of
Database Systems, Liu, Ling, Ozsu M. Tamer, Ed. Boston
(MA): Springer, pp.1417-1421.

[17]. Edwards, J., McCurley, K. and Tomlin, J .A(2001), “An
Adaptive Model for Optimizing Performance of an Incremental

Web Crawler”, Proceedings of the 10th international conference
on World Wide Web, Hong Kong, pp.106-113.

[18]. Elaraby, M.E., Sakre , M. , Rashad, M.Z. and Nomir, O(2012),
“Crawler Architecture using Grid Computing”, International
Journal of Computer Science & Information Technology,
volume. 4, Issue 3.

[19]. Cao, F., Jiang, D. and Singh, JP(2003), “Scheduling Web Crawl
for Better Performance and Quality”. Tech Rep., TR-682-03.

Kavita Goel, MCA, Pursuing P.hd.

Received the Bachelor Degree in
computer application from MDU Rohtak

in 2005 and received the Post graduation

degree in computer application from

MDU Rohtak in 2008.Teaching

experience of 2.5 years in GSMVNIET

and presently working in DAV Institute

of Management since 2015.

