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Abstract. This paper introduces a novel framework for graph sparsifi-
cation that preserves the essential learning attributes of original graphs,
improving computational efficiency and reducing complexity in learning
algorithms. We refer to these sparse graphs as “learning backbones.” Our
approach leverages the zero-forcing (ZF) phenomenon, a dynamic pro-
cess on graphs with applications in network control. The key idea is to
generate a tree from the original graph that retains critical dynamical
properties. By correlating these properties with learning attributes, we
construct effective learning backbones. We evaluate the performance of
our ZF-based backbones in graph classification tasks across eight datasets
and six baseline models. The results demonstrate that our method out-
performs existing techniques. Additionally, we explore extensions using
node distance metrics to further enhance the framework’s utility.
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1 Introduction

In recent decades, networks have become essential for analyzing complex sys-
tems with applications in computer vision [18], 3D object modeling [11], and
chemical molecules [16]. In machine learning, constructing efficient graph repre-
sentations is critical for tasks like social network analysis, financial systems, and
recommendation systems [25]. The complexity of real-world graphs often requires
extracting sparse yet informative substructures, known as graph learning back-
bones, to enable effective learning [26]. This paper addresses the challenge of
identifying these sparse representations while retaining essential properties for
downstream tasks by integrating principles from Network Control Theory [10].

Control theory, renowned for analyzing and steering dynamic systems [22],
helps select minimal edge sets that capture a graph’s intrinsic behavior [5,17].
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Viewing a graph as a dynamic system, this approach ensures controllability by
maintaining key structural properties.

In graph-based learning, preserving dynamic properties is crucial for accu-
rate classification and prediction [20]. Previous methods such as graph sparsifiers
and spanners [13,14] aimed to reduce graph complexity while retaining key prop-
erties, but often lacked alignment with specific graph learning objectives [26].
Techniques like spectral rewiring [6], Forman curvature-based rewiring [23], and
graph diffusion [8] have also been explored for optimizing graph structures. How-
ever, these methods can sometimes lead to information loss or significant graph
densification, which complicates learning tasks. Sparse subgraph extraction tech-
niques have focused on community preservation [26] but remain limited in bal-
ancing both sparsity and learning effectiveness.

Inspired by tree-like substructures in communication networks [29], we pro-
pose that a connected tree subgraph represents the minimal structure required
for learning. These sparse trees, derived from control theory, offer efficient rep-
resentations while preserving critical properties.

Graph learning has advanced significantly [20], but determining the ideal
graph structure for specific learning objectives remains a challenge [24]. This
motivates exploration of the Graph Lottery Ticket Hypothesis (GLTH), which
posits that within any complex graph, there exists a sparse substructure capable
of achieving comparable performance to the full graph [24], opening new avenues
for scalable graph learning [7].

However, prevailing methods for uncovering these winning tickets often rely
on pruning or sampling, risking information loss [7]. This paper introduces a
novel control-theoretic approach to discovering these tickets. The Graph Lottery
Ticket Hypothesis is articulated as follows:

Graph Lottery Ticket Hypothesis [24]: For any given graph, there exists a
sparse subset of edges such that training any graph learning algorithm solely
on this subset yields performance comparable to that of the original graph.

We present a detailed exploration of our control-theoretic approach to discov-
ering Graph Lottery Tickets (GLTs), which we refer to as learning backbones.
We propose that the zero-forcing set (ZFS)-based control backbone [2], a tree,
represents the winning ticket. Our method demonstrates superior precision and
efficiency in identifying substructures compared to existing techniques. Addition-
ally, we extend this concept by preserving other control properties in the graph.
Through experiments on diverse datasets and tasks, we showcase the exceptional
performance and sparsity of the winning tickets identified by our approach.

The rest of the paper is organized as follows: Sect. 2 introduces important
notations and formulates the main problem of graph sparsification for graph clas-
sification. Section 3 defines the concept of the ZFS-based backbone and proposes
several approaches to compute the learning backbone using control properties
of networks. Section 4 presents empirical results for graph classification. Finally,
Sect. 5 concludes the paper and discusses future directions.
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In the next section, we review some notations to be used in the rest of the
paper and explain the main problem.

2 Preliminaries and Problem Formulation

In this section, we establish the fundamental notation to be employed throughout
the paper and properly formulate the main problem addressed in this paper.

2.1 Preliminaries

An undirected graph G = (V,E) represents a multi-agent network, where the
vertex set V represents agents and the edge set E ⊆ V × V denotes interactions
between them. An edge between vertices u and v is denoted by the unordered pair
(u, v). The neighborhood of vertex u is defined as NG(u) = {v ∈ V : (u, v) ∈ E},
and the degree of u is deg(u) = |NG(u)|. The average degree d̄ is given by
d̄ = 1

|V |
∑

v∈V deg(v), where deg(v) is the degree of vertex v.
A path P in G is a sequence of distinct vertices (v1, v2, . . . , vk) such that for

each i from 1 to k − 1, there exists an edge between vi and vi+1. The distance
between vertices u and v, denoted dG(u, v), is the number of edges in the shortest
path between u and v. For simplicity, the subscript is dropped when the context
is clear. A graph Ĝ = (V̂ , Ê) is a subgraph of G = (V,E), denoted Ĝ ⊆ G, if
V̂ ⊆ V and Ê ⊆ E.

A connected component C of G is a maximal subset of vertices V ′ ⊆ V such
that for every pair of vertices u, v in V ′, there exists a path between u and v.
A tree is an undirected graph that is connected and acyclic, or equivalently, a
graph with n vertices and n − 1 edges.

2.2 Problem Formulation

In the context of graph-based machine learning, the graph classification prob-
lem is a fundamental task. The objective is to assign a discrete label to an
entire graph, indicating the class to which the graph belongs. This task finds
applications in various domains, such as cheminformatics, where graphs repre-
sent molecules, and social network analysis, where graphs represent interactions
between individuals [12].

Formally, given a collection of graphs {G1, G2, . . . , Gk}, where each graph
Gi = (Vi, Ei) consists of a set of vertices Vi and a set of edges Ei, and a corre-
sponding set of labels {y1, y2, . . . , yk} with yi ∈ {0, 1, . . . , C}, the goal is to learn
a function φ : G → y, where G is the set of all possible graphs, y ∈ {0, 1, . . . , C},
and C ∈ Z is the number of possible labels. The function φ takes an input
graph Gi and outputs a label ỹi, representing the predicted class of the graph.
A machine learning approach to this problem involves training a model to gen-
erate this discrete labeling: a model φ(Gi,θ) that takes an input graph Gi and
outputs a probability score φ : {Gi} → [0, 1]C indicating the likelihood of each
graph being classified as one of the classes, where θ are the learnable weights.



88 O. U. Ahmad et al.

The learned function φ(G,θ) should minimize the classification error L(y, ỹ) on
a given set of graphs, where the error is essentially the difference between the
predicted label ỹ and the true given label y.

Problem 1 (Graph Classification): Given a graph G = (V,E), the goal is
to map G to a discrete label y ∈ {0, 1, . . . , C} using a machine learning model
with learnable weights θ. The mapping function φ can be expressed as:

ỹ = φ(G;θ),

where ỹ is the predicted label for the graph G and θ represents the parameters
of the model.

In many applications of graph-based machine learning, dealing with large and
dense graphs can pose significant computational challenges. Graph sparsification
is a crucial technique to address this issue, aiming to reduce the number of
edges in a graph while preserving its essential properties [24]. By simplifying
the graph structure, sparsification can lead to more efficient algorithms, reduced
memory usage, and faster processing times, without significantly compromising
the performance of graph-based tasks such as classification. Formally, given a
graph G = (V,E), a sparsification function A produces a sparser subgraph Ĝ =
(V, Ê) such that Ê ⊆ E and |Ê| � |E|. The goal is to ensure that Ĝ retains the
key structural properties of G necessary for downstream machine learning tasks.

Problem 2 (Graph Sparsification): Given a graph G = (V,E) and a label
y, the goal is to find a sparsification function A : G → Ĝ such that G �→ Ĝ =
(V, Ê), Ê ⊆ E, and φ(Ĝ,θ) = ỹ where the predicted label ỹ should be the same
as the given label y.

In light of graph classification, the problem can be framed to incorporate
graph sparsification. To leverage sparsification, we first apply a sparsification
function A to each graph Gi, obtaining a sparser graph Ĝi = A(Gi) ∀i ∈
{1, 2, . . . , k}. Then, we learn the classification function φ on the set of sparser
graphs {Ĝ1, Ĝ2, . . . , Ĝk}. The objective is to minimize the classification error
L(y, ỹ) on the sparsified graphs, ensuring φ(Ĝ,θ) = ỹ ≈ y and thus maintaining
high classification performance on the original graph set. This idea is presented
in Fig. 1 where the gray box represents the main focus of this work.

In Sect. 3.2, we propose a novel approach to sparsify a graph for computing
the learning backbone. The sparse graph we propose is a tree, as it is the min-
imum connected graph structure. Finding a tree graph for a given graph is not
a trivial task, as it can be computationally expensive to identify a suitable tree
that preserves the essential properties of the original graph required for down-
stream learning tasks. The exact number of spanning trees of a given graph can
be computed by the Matrix Tree Theorem [9]. The number of spanning trees of
a given graph G = (V,E) is the normalized product of the non-zero eigenvalues

of the Laplacian matrix, and it can be as large as
(

2m−Δ−δ−1
n−3

)n−3

, where n is
the number of nodes and n > 3, m is the number of edges, Δ is the maximum
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Fig. 1. Main Idea: Sparsify the graph while maintaining the critical learning backbone
for downstream machine learning tasks such as graph classification. The predicted label
φ(Ĝ, θ) = ỹ should be close to the true label y.

degree, and δ is the minimum degree [15]. Note that the number of spanning
trees in a given graph can be exponential with respect to the number of vertices.

In the next section, we present our proposed approach for finding a learning
tree backbone.

3 Learning Backbone

Control theory is a branch of engineering and mathematics focused on the behav-
ior of dynamical systems with inputs. Its goal is to develop a control strategy
that governs the system’s output by manipulating the inputs. A core concept
in control theory is feedback, where the system’s output is measured and used
to adjust the inputs to maintain desired performance. Control theory has appli-
cations in robotics, aerospace, and economics. The structural properties of the
underlying graph, representing the network of interconnected components, sig-
nificantly influence a system’s dynamic behavior. For instance, the presence or
absence of specific edges can affect the stability, controllability, and observability
of the system [1].

The dynamic behavior of a control system is closely related to graph-based
machine learning. In machine learning, how information propagates through a
graph is crucial for tasks such as node classification, link prediction, and graph
classification [20,21]. The graph structure dictates how signals spread across
the network, influencing the performance of graph neural networks (GNNs) and
other models. Sparse representations, like trees, play a vital role by preserving
essential control properties, such as connectivity and controllability [2], while
reducing computational complexity. This approach aligns with the Graph Lot-
tery Ticket Hypothesis, which suggests that a sparse substructure within a com-
plex graph can achieve comparable performance to the original, optimizing both
control and learning objectives.

In this section, we explore the concept of the network controllability back-
bone, which aims to identify a sparse subset of edges that preserves the network’s
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controllability under structural perturbations. We begin by establishing the fun-
damental framework for understanding controllability in networked systems and
then introduce the concept of a learning backbone.

3.1 Controllability Framework

Consider a network of n agents, denoted by V = {v1, v2, · · · , vn}. Among
these agents, m are designated as input or leader vertices, represented as
V� = {�1, �2, · · · , �m} ⊆ V , while the remaining vertices act as followers. The
network’s dynamics are modeled by the following linear time-invariant system:

ẋ(t) = Mx(t) + Hu(t), (1)

where x(t) ∈ R
n is the state vector, and u(t) ∈ R

m represents the external input
injected through the m leaders. The matrix M ∈ M(G) is the system matrix
associated with the graph G, and H ∈ R

n×m is the input matrix determined by
the leader vertices. The family of matrices M(G) is defined as follows:

M(G) = {M ∈ R
n×n : M = M�, and for i 	= j,

Mij 	= 0 ⇔ (i, j) ∈ E(G)}.
(2)

This definition encompasses a broad class of system matrices associated with
the graph G, including the adjacency matrix, Laplacian matrix, and the signless
Laplacian matrix.

A system (1) is controllable if an input u(t) can drive the system from any
initial state x(t0) to any desired state x(tf ) in finite time. We say that (M,H)
is a controllable pair if and only if the controllability matrix C(M,H) ∈ R

n×nm

is full rank, i.e., rank(C(M,H)) = n. The controllability matrix is given by:

C(M,H) =
[
H MH M2H · · · Mn−1H

]
. (3)

Definition 1. (Strong Structural Controllability (SSC)) A graph G = (V,E)
with a specified set of leaders V� ⊆ V (and the corresponding H matrix) is
strongly structurally controllable if and only if (M,H) is a controllable pair for
all M ∈ M(G).

If the network G is strongly structurally controllable for a given set of leaders,
then the rank of the controllability matrix does not depend on the edge weights
(as long as they satisfy the conditions given by M(G)). For the remainder of this
paper, we will refer to strong structural controllability simply as controllability.
The dimension of the strongly structurally controllable subspace, denoted by
γ(G,V�), is the smallest possible rank of the controllability matrix under feasible
edge weights.
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Network Controllability Backbone. The main idea of a controllability back-
bone is to identify a minimal subset of edges within a network that ensures the
preservation of its controllability in any subgraph. We define the controllabil-
ity backbone as this sparse subgraph, denoted by B, such that any subgraph Ĝ
containing B maintains at least the same level of controllability as the original
network G.

Definition 2. (Controllability Backbone) For a given graph G = (V,E) and a
set of leaders V� ⊆ V , the controllability backbone B = (V,EB) is a subgraph
of G such that any subgraph Ĝ = (V, Ê) containing EB, i.e., EB ⊆ Ê ⊆ E,
satisfies:

γ(Ĝ, V�) ≥ γ(G,V�). (4)

In essence, the controllability backbone ensures that the controllability of
any subgraph encompassing it does not deteriorate compared to the original
network.

3.2 Zero Forcing for Controllability Backbone

Zero forcing is a rule-based coloring technique for vertices in a graph, providing
a lower bound on the dimension of Strong Structural Controllability (SSC). By
leveraging zero forcing, our aim is to identify a subset of edges constituting the
controllability backbone, termed as the ZFS-based backbone.

Definition 3 (Zero Forcing (ZF) Process). Let G = (V,E) be a graph where
each vertex v ∈ V is initially colored either black or white. The ZF process
iteratively changes the color of white vertices to black according to the following
rule until no further color changes are possible: Color change rule: If a black

vertex v ∈ V has exactly one white neighbor u, change the color of u to black.

We define a forced relationship between vertices v and u if a black vertex v
changes the color of a white vertex u to black during the ZF process.

Definition 4 (Derived Set). Let G = (V,E) be a graph with V� ⊆ V rep-
resenting the initial set of black vertices. The derived set [4], denoted by
dset(G,V�), is the set of black vertices obtained after the ZF process, and
|dset(G,V�)| = ζ(G,V�). When the context is clear, we omit the parameter V�.

The set of initial black vertices V� is also known as the input or leader set.
For a given V�, dset(G,V�) is unique [4]. Now, we define the zero forcing set.

Definition 5 (Zero Forcing Set (ZFS)). For a graph G = (V,E), V� ⊆ V
is a ZFS if and only if dset(G,V�) = V . We denote a ZFS of G by Z(G).

Figure 2 illustrates zero forcing through a set of input vertices and the corre-
sponding derived set. Initially, V� = {v1, v2, v5, v6} are colored black. In the next
step, v2 can force v3 as it is its only white neighbor and so on.
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Fig. 2. V� = {v1, v2, v5, v6} is the input set. After the ZF process, dset(G, V�) = V , as
indicated by the black vertices. Hence, V� is a ZFS.

The zero forcing phenomenon is significant in characterizing the network’s
SSC [28]. In particular, the size of the derived set for a given set of input vertices
provides a lower bound on the dimension of SSC, i.e., for a network G = (V,E)
with the leader set V� ⊆ V , we have ζ(G,V�) ≤ γ(G,V�) [3,28]. By computing
the ZFS, we obtain a lower bound on the dimension of SSC, facilitating the
identification of the controllability backbone.

ZFS-Based Backbone. Our goal is to discover a backbone that maintains the
zero forcing bound ζ(G,V�) for a given leader set V�. The objective is to identify
a subset of edges EBZ

in the graph G = (V,E) with V� such that the ZFS-based
controllability bound is preserved in any subgraph Ĝ = (V, Ê) containing those
edges (EBZ

⊆ Ê). Formally, we define the ZFS-based backbone as follows:

Definition 6. (ZFS-based Backbone) Given a graph G = (V,E) and a leader
set V�, the ZFS-based backbone, denoted as Bz = (V,EBz

), is a subgraph where
any subgraph Ĝ = (V, Ê) containing EBZ

satisfies ζ(Ĝ, V�) ≥ ζ(G,V�).

Thus, in any subgraph of G containing the ZFS-based backbone, the dimen-
sion of SSC is at least ζ(G,V�), i.e., γ(Ĝ, V�) ≥ ζ(G,V�).

3.3 Controllability Backbone as Learning Backbone

In graph-based learning, optimizing the underlying graph structure for both con-
trol and information propagation is crucial. The Zero Forcing Set (ZFS) method
is a powerful tool for maintaining network controllability. By leveraging the
principles of strong structural controllability (SSC), we can identify a minimal
subset of edges, termed the ZFS-based controllability backbone, which preserves
the essential control properties of the original graph. This backbone, effectively
forming a sparse substructure, ensures robust dynamic behavior while signifi-
cantly reducing computational complexity. Using the ZFS-based controllability
backbone as the learning backbone aims to enhance the efficiency of graph clas-
sification tasks while maintaining the critical control properties of the original
network.

It has been shown that the ZFS-based backbone Bz is a set of paths origi-
nating from vertices v ∈ V�, always having n − |V�| edges, and consequently, |V�|
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connected components [2]. If the original graph is connected, edges can be added
to form a subgraph G′ = (V,E′) such that EBZ

⊆ E′ ⊆ E, and G′ is a connected
tree. This tree, known as the learning backbone, substitutes the original tree and
can be used for downstream machine-learning tasks. This approach is presented
in Algorithm 1.

Algorithm 1. Computing Learning Backbone
Input: Graph G = (V, E)
Output: Learning backbone Ĝ = (V, Ê)
1: Compute a zero-forcing set V� [3]
2: Initialize a graph Bz with paths originating from all vertices v ∈ V� by running the

zero-forcing process
3: Add any |V�| − 1 edges from G to Bz to form Ĝ such that Ĝ becomes a connected

tree

Theorem 1. Given a graph G = (V,E), Algorithm 1 returns a learning back-
bone, a connected tree, that is strong structurally controllable for the computed
leader set V�.

Proof. For any given graph G = (V,E) and leader set V�, any subgraph Ĝ =
(V, Ê), where EBZ

⊆ Ê ⊆ E, satisfies the relation

ζ(Ĝ, V�) ≥ ζ(G,V�)

by definition. In step 1 of Algorithm 1, we compute a zero-forcing set that makes
the graph fully controllable. Hence, γ(G,V�) = |V |. The ZFS-based backbone Bz

contains an unconnected set of paths where each path originates from a leader
vertex. Bz can be computed from Algorithm 1 of [2]. By definition of Bz, we
can add any number of edges from the original graph randomly, and the graph
will remain fully controllable. The learning backbone Ĝ contains only the edges
that are in the original graph besides containing the controllability backbone
Bz. Hence, we can compute a connected tree with n − 1 edges from Algorithm
1 where the tree would be strong structurally controllable for the computed
zero-forcing set V� (Fig. 3).

3.4 Generalized Learning Backbone

In networked systems, preserving various control properties is crucial for robust
performance and effective information propagation. While the Zero Forcing Set
(ZFS) method ensures network controllability, other control properties, such as
controllability matrices, graph distances, and structural patterns, also signifi-
cantly impact dynamical system behavior.
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Fig. 3. Illustration of the proposed framework: The process begins by identifying a
leader vertex subset within the graph. Using network control theory, a graph sparsi-
fication framework is then applied to derive a tree-like structure, called the ‘learning
backbone’, from the original graph.

Graph distances, representing the shortest paths between vertices, are partic-
ularly important for understanding how control signals propagate through a net-
work. The distribution of these distances influences system stability and respon-
siveness [28]. In closely connected networks, control inputs more efficiently affect
the entire system. The distances between all vertices and leaders also determine
the lower bound on controllability rank, γ(G,V�) [27]. For a network G = (V,E)
with leaders V� = {�1, �2, · · · , �m}, the distance-to-leader (DL) vector for each
vi ∈ V is defined as

Di =
[
d(�1, vi) d(�2, vi) · · · d(�m, vi)

]T ∈ Z
m,

where [Di]j = d(�j , vi) is the distance between leader �j and vertex vi. The
maximum sequence of these DL vectors that meets certain constraints defines
the lower bound on γ(G,V�).

Ahmad et al. introduced the distance-based controllability backbone Bd =
(V,EBd

), which emphasizes preserving key distances between vertex pairs, unlike
the ZFS-based backbone Bz, which focuses on tree-like structures [2]. While Bz

ensures controllability via paths, Bd maintains critical distances while preserving
sparsity with O(n) edges, where n is the number of vertices.

Incorporating graph distances into backbone construction enhances control
properties and ensures robust dynamic behavior, supporting downstream tasks
like graph classification by retaining the network’s structural integrity, as demon-
strated in Sect. 4.

In summary, while the ZFS-based method is valuable for ensuring control-
lability, considering additional control properties like graph distances offers a
more comprehensive approach. The distance-based backbone balances sparsity
with the preservation of critical features, providing robust control across various
applications. We incorporate the distance-based backbone in our experiments,
detailed in Sect. 4.

4 Experimental Results

In this section, we offer a comprehensive evaluation of the proposed framework
within the context of graph classification tasks, employing real-world social net-
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Table 1. Dataset stats

Dataset # of Graphs # of Nodes Average Degree d̄ Density

Original Backbone

min max Original Backbone min max min max

MUTAG 188 10 28 2.189 1.88 0.082 0.222 0.071 0.20

PTC 344 2 64 1.981 1.862 0.034 1.0 0.031 1.0

PROTEINS 1113 4 620 3.735 1.893 0.005 1.0 0.003 0.5

NCI1 4110 3 111 2.155 1.908 0.019 0.667 0.018 0.667

Deezer Ego 9,629 11 363 4.292 1.887 0.015 0.909 0.006 0.182

GitHub Stargazers 12,725 10 957 3.111 1.939 0.003 0.561 0.004 0.200

Twitch Ego 127,094 12 52 5.397 1.922 0.038 0.967 0.038 0.143

Reddit Threads 203,088 11 97 2.039 1.889 0.021 0.328 0.021 0.182

works and molecular datasets. We introduce the datasets and then provide a
detailed description of the experimental setup. Following the setup, we discuss
the results, elucidating the efficacy of our framework (Table 1).

4.1 Datasets

We evaluate our proposed approach using eight real-world datasets relevant for
binary graph classification tasks. These datasets include MUTAG, PTC, PRO-
TEINS, NCI1, Deezer Ego Network, GitHub Stargazers, Twitch Ego Networks,
and Reddit Threads [16,19]. Each dataset presents unique challenges in graph
classification, offering a comprehensive testbed for assessing the effectiveness of
our ZFS-based backbone approach.

4.2 Experimental Setup

We evaluate six widely recognized graph convolution methods: k-GNN, Graph-
SAGE, GCN, Transformer Convolution (UniMP), Residual Gated Graph Con-
vNets (ResGatedGCN), and Graph Attention Network (GAT). The proposed
learning frameworks consists of three GNN layers, each with 64 hidden units.
After the GNN layers, we apply Sort Aggregation, followed by two 1D convo-
lution layers with Max Pooling. The output is then passed through a two-layer
multi-layer perceptron, each layer containing 32 hidden neurons.

For evaluation, we perform 10-fold cross-validation, training each model for
100 epochs. The learning rate is set to 1×10−4, and weight decay is 5×10−4. All
experiments are conducted on a Lambda machine with an AMD Ryzen Thread-
ripper PRO 3975WX 32-Core CPU, 512 GB of RAM, and an NVIDIA RTX
3090 GPU with 16 GB of memory.

We present the ROC AUC (Receiver Operating Characteristic Area Under
the Curve) classification results for all eight datasets, comparing the original
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graphs and the ZFS-based tree backbone graphs in Table 2. Consistent architec-
tures and experimental settings are used for evaluation. Overall, the performance
between the backbone graphs Bz and the original graphs is comparable across
all datasets.

4.3 Results Analysis

For certain datasets, such as Deezer Ego and PTC, we observe from Table 2
that the ZFS-based backbone—derived from zero forcing-based controllability—
serves as a more effective representation for graph learning tasks. This is exem-
plified by the notable performance improvement seen with the PTC dataset,
where the application of a UniMP baseline GNN model on the backbone graph
resulted in a maximum performance enhancement of 9.04%. In fact, in 20 out
of 48 combinations, the backbone representation resulted in a better ROC AUC
compared to the original graphs. Moreover, in 38 out of 48 combinations, the
backbones exhibited less than 5% deterioration in ROC AUC, further under-
scoring the potential of our proposed backbone to not only simplify the graph
structure but also to potentially uncover more salient features pertinent to the
learning task.

Conversely, it is crucial to acknowledge instances where the proposed back-
bone representation led to a decrease in performance. The most significant reduc-
tion was observed with the NCI1 dataset, where the application of the GCN base-
line model on the backbone graph saw a decline in ROC AUC by 10.68%. This
suggests that while the proposed backbone can generally maintain or improve
performance, there may be specific scenarios or datasets where the full topol-
ogy of the original graph is necessary to capture the nuances required for better
classification.

In Sect. 3, we introduced two methodologies for deriving control backbones
from networks: the ZFS approach and the distance-based approach. Both meth-
ods are designed to ensure network controllability. Similar to Bz, the distance-
based backbone, denoted as Bd [2], is crafted to maintain the lower controlla-
bility bound, preserving the network’s control characteristics. We evaluated the

Table 2. Comparison of ROC AUC scores of the proposed method (ZFS-based back-
bone) against original graphs. Pairs where the backbone ROC AUC is within 5% of the
original are highlighted in blue. Additionally, backbone values higher than the original
are bolded.

Datasets
k-GNN SAGE GCN UniMP ResGatedGCN GAT

Original Backbone Original Backbone Original Backbone Original Backbone Original Backbone Original Backbone

Deezer Ego 50.98 52.07 50.82 52.54 48.45 52.66 50.34 52.65 51.72 54.21 50.54 50.88

Twitch Ego 72.23 72.36 72.34 72.47 72.44 72.25 72.35 72.47 72.42 72.49 72.37 72.47

GitHub Stargazers 71.47 68.54 64.95 61.85 65.58 64.65 65.59 65.45 72.55 68.52 65.01 62.03

Reddit Threads 83.80 83.40 82.99 83.45 83.06 83.26 83.87 83.54 83.87 83.55 83.84 83.05

MUTAG 93.20 90.13 86.02 92.95 88.07 92.31 91.92 82.94 92.95 92.95 90.25 95.13

PTC 49.10 56.80 47.79 56.07 50.93 46.87 48.36 57.40 57.53 48.70 53.33 57.07

PROTEINS 78.65 75.62 77.59 73.78 78.37 72.36 77.86 76.25 77.02 75.34 77.62 72.95

NCI1 77.78 69.60 69.23 67.92 72.34 61.66 70.63 67.63 72.50 66.41 71.72 66.89
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effectiveness of these backbones by comparing their performance to the origi-
nal graphs, and included random spanning trees, constructed using Kruskal’s
algorithm, as a baseline for learning and controllability. The empirical results,
shown in Fig. 4, reveal a clear trend: in most cases, the control backbones out-
perform the original graphs across various datasets and models. In 67% of cases,
the control backbones improve ROC AUC compared to the original graphs, with
less than 5% deterioration in the remaining cases. Additionally, the control back-
bones outperform random spanning trees in approximately 80% of cases, with less
than 2% deterioration in the rest. These results demonstrate that the ZFS- and
distance-based control backbones provide an effective solution for simplifying
network structures while retaining essential control and learning properties.

Fig. 4. Comparing the Efficacy of Network Backbone Structures for Graph Classifica-
tion. The backbone represents the best-performing structure between Bz and Bd. The
results are compared against the original graphs and random spanning tree subgraphs
of the original graphs.

5 Conclusion and Future Work

This work develops an effective sparse machine learning backbone for graphs
using a ZFS-based approach. This method simplifies graph structures into tree-
like forms while retaining essential control properties, enhancing learning effi-
ciency. Extensive experiments demonstrate that the ZFS-based backbone not
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only preserves network controllability but often outperforms original graphs and
other sparse representations in graph classification tasks. We also explored a
distance-based backbone, showing its potential to generalize the controllabil-
ity backbone and preserve critical characteristics across diverse networks. The
ZFS-based backbone provides a robust, efficient solution for improving graph
learning by simplifying structures without sacrificing control attributes. Future
research will refine the backbone computation process for large-scale applications
and investigate the relationship between controllability and learning through the
average degree of learning backbones.
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