
IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1 | P a g e

 Analysis of TCP Variants Using Network Simulator and

Emulator on Linux Platform
Harshit B. Parmar1, Kapil S. Raviya2

1BE Student, Department of Electronics & Communication Engineering, C.U.Shah College of Engineering
and Technology, Wadhwan, Gujarat, India

2Assistant Professor, Department of Electronics & Communication Engineering,
C.U.Shah College of Engineering and Technology, Wadhwan, Gujarat, India

Abstract—TCP/IP is the main and most widely used

transport protocol for reliable communication since the

Internet arrived. The use of original TCP/IP protocol on

wireless links in spreading the Internet has encountered

some serious performance issues. New versions of the TCP

have been proposed to improve data transmission

performance. Because of its widespread need, researchers

have been studying and proposing new TCP variants trying

to improve its behavior. There are different variants of TCP

named TAHOE, RENO, NEW RENO, TCP VEGAS,

COMPOUND TCP, HS (High Speed) TCP etc. Network

Simulation and Emulation are widely used to Develop, Test
and Debug new protocols, to explore and study a specific

Network related research issue, or to evaluate the network

performance of an existing protocol. In this paper, we will

compare the performance of different TCP variants in terms

of different parameters and the simulation results can

provide further insight into the advantages and drawbacks of

TCP variants.

Keywords - Congestion window, Corruption,

Throughput, Fast retransmit, Fast recovery, Slow Start

Threshold, NS2, RTT, DUPACK.

I. INTRODUCTION
 Internet traffic is basically made of up of small data bursts

called packets. These packets contain information about the

origin and destination of the data. The packets are created

and reassembled by the transmission control protocol and

sent over the Internet by the Internet protocol.

Originally, TCP was developed for wired links and wired

links have very less chances of high delay and data

corruption due to external parameters. Congestion is the

main reason of packet loss on wired links. So, TCP was

designed by keeping in mind the above parameters. Wireless

links have several problem of variable and high delay with

high Bit Error Rate (BER). So initially, unmodified old TCP
started to perform badly on wireless links. To deal with the

problems of wireless links, a research started in the field of

TCP and modifications were done according to the

requirements to improve the performance. Variants named

Tahoe, Reno, New Reno and SACK and many more came

into existence. TCP is a reliable connection oriented end-to-

end protocol. TCP ensures reliability by starting a timer

whenever it sends a segment. If it does not receive an

acknowledgement from the receiver within the „time-out‟

interval then it retransmits the segment. We shall take brief

look at each of the congestion avoidance algorithms and see

how they differ from one another.

II. BASICS OF TCP VARIANTS

 Fig.1: Evolution of TCP Variants

A. TCP Tahoe

TCP Tahoe, one of the variant of TCP congestion control

algorithm, was suggested by Van Jacobson in his paper and

added some new improvement on the TCP completion in

the early stage. That enhance consists congestion avoidance,

slow start and fast retransmission.

Tahoe detects packet losses by timeouts and then

retransmit the lost packets. A packet loss is taken as a sign

of congestion and Tahoe saves the half of the current

window as ssthresh value. Then it set cwnd to one and starts

slow start until it reaches the threshold value. After that it
increments linearly until it encounters a packet loss. Thus it

increase it window slowly as it approaches the bandwidth

capacity.

Limitations of Tahoe:

The problem with Tahoe is that it takes a complete

timeout interval to detect a packet loss. In fact, in most

implementations it takes even longer. Also since it doesn't

send immediate ACK's, it sends cumulative

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 28 | P a g e

acknowledgements, therefore it follows a 'go back n'

approach. Thus every time a packet is lost it waits for a

timeout and the pipeline is emptied. This offers a major cost

in high band-width delay product links. TCP Tahoe does not

deal well with multiple packet drops within a single window

of data.

B. TCP Reno

Reno is defined as a TCP containing the slow start, fast
retransmit, fast recovery and congestion avoidance
algorithms. This Reno retains the basic principle of Tahoe,
such as slow starts and the coarse grain re-transmit timer.
However it adds some intelligence over it so that lost packets
are detected earlier and the communication path (pipeline) is
not emptied every time a packet is lost. Reno requires that
we receive immediate acknowledgement whenever a
segment is received. The logic behind this is that whenever
we receive a duplicate acknowledgment, then his duplicate
acknowledgment could have been received if the next
segment in sequence expected, has been delayed in the
network and the segments reached there out of order or else
that the packet is lost.

If we receive a number of duplicate acknowledgements
then that means that sufficient time have passed and even if
the segment had taken a longer path, it should have gotten to
the receiver by now. There is a very high probability that it
was lost. So Reno suggests an algorithm called ‘Fast Re-
Transmit’.

Problems:

 Reno performs very well over TCP when the packet
losses are small. But when we have multiple packet losses in
one window then RENO doesn’t perform too well and it’s
performance is almost the same as Tahoe under conditions of
high packet loss. The reason is that it can only detect a single
packet loss. If there is multiple packet drops then the first
info about the packet loss comes when we receive the
duplicate ACK’s. But the information about the second
packet which was lost will come only after the ACK for the
retransmitted first segment reaches the sender after one RTT.

C. TCP Vegas

TCP Vegas is a modified version of TCP Reno. It builds

on the fact that proactive measure to encounter congestion is

much more efficient than reactive ones. It tried to get around

the problem of coarse grain timeouts by suggesting an

algorithm which checks for timeouts at a very efficient

schedule. Also it overcomes the problem of requiring

enough duplicate acknowledgements to detect a packet loss,

and it also suggests a modified slow start algorithm which

prevents it from congesting the network. It does not depend

solely on packet loss as a sign of congestion. It detects
congestion before the packet losses occur. However it still

retains the other mechanism of Reno and Tahoe, and a

packet loss can still be detected by the coarse grain timeout

of the other mechanisms fail. The three major changes

induced by Vegas are:

 New Re-Transmission Mechanism:

Vegas extend on the re-transmission mechanism of

Reno. It keeps track of when each segment was sent and it

also calculates an estimate of the RTT by keeping track of

how long it takes for the acknowledgment to get back.

Whenever a duplicate acknowledgement is received it

checks to see if the (current time segment transmission
time)> RTT estimate; if it is then it immediately retransmits

the segment without waiting for 3 duplicate

acknowledgements or a coarse timeout. Thus it gets around

the problem faced by Reno of not being able to detect lost

packets when it had a small window and it didn’t receive

enough duplicate Ack’s. To catch any other segments that

may have been lost prior to the retransmission, when a non-

duplicate acknowledgment is received, if it is the first or

second one after a fresh acknowledgement then it again

checks the timeout values and if the segment time since it

was sent exceeds the timeout value then it re-transmits the

segment without waiting for a duplicate acknowledgment.
Thus in this way Vegas can detect multiple packet losses.

Also it only reduces its window if the re-transmitted

segment was sent after the last decrease. Thus it also

overcome Reno’s shortcoming of reducing the congestion

window multiple time when multiple packets are lost.

 Congestion avoidance:

TCP Vegas is different from all the other

implementation in its behavior during congestion avoidance.

It does not use the loss of segment to signal that there is

congestion. It determines congestion by a decrease in

sending rate as compared to the expected rate, as result of
large queues building up in the routers. Thus whenever the

calculated rate is too far away from the expected rate it

increases transmissions to make use of the available

bandwidth, whenever the calculated rate comes too close to

the expected value it decreases its transmission to prevent

over saturating the bandwidth. Thus Vegas combats

congestion quite effectively and doesn’t waste bandwidth by

transmitting at too high a data rate and creating congestion

and then cutting back, which the other algorithms do.

 Modified Slow-start:

TCP Vegas differs from the other algorithms during its
slow-start phase. The reason for this modification is that

when a connection first starts it has no idea of the available

bandwidth and it is possible that during exponential increase

it over shoots the bandwidth by a big amount and thus

induces congestion. To this end Vegas increases

exponentially only every other RTT, between that it

calculates the actual sending through put to the expected and

when the difference goes above a certain threshold it exits

slow start and enters the congestion avoidance phase.

Problems:

TCP Vegas has the amazing property of rate stabilization
in a steady state, which can significantly improve the overall

throughput of a TCP flow. Unfortunately, later research

discovered a number of issues, including underestimates

available network resources in some environments (e.g. in

the case of multipath routing) and has a bias to new streams

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 29 | P a g e

(i.e. newcomers get a bigger share) due to inaccurate

RTTmin estimates.

D. TCP New Reno

New RENO is a modified version of TCP RENO. New

RENO is able to detect multiple packet losses. Thus it’s

much more efficient than RENO in the event of multiple

packet losses. New-Reno also enters into fast-retransmit

when it receives multiple duplicate packets like RENO,

however it differs from RENO in that it doesn’t exit fast-

recovery until all the data which was out standing at the

time it entered fast recovery is acknowledged. Thus it

overcomes the problem faced by Reno of reducing the CWD
multiples times. The fast-transmit phase is same as in Reno.

The difference in the fast recovery phase which allows for

multiple re-transmissions in new-Reno. Whenever new-

Reno enters fast recovery it notes the maximums segment

which is outstanding. The fast-recovery phase proceeds as in

Reno, however when a fresh ACK is received then there are

two cases:

 If it ACK’s all the segments which were outstanding

when we entered fast recovery then it exits fast

recovery and sets CWD to ssthresh and continues

congestion avoidance like Tahoe.

 If the ACK is a partial ACK then it deduces that the

next segment in line was lost and it re-transmits that

segment and sets the number of duplicate ACKS

received to zero. It exits Fast recovery when all the

data in the window is acknowledged.

Problems:

New-Reno suffers from the fact that it takes one RTT to

detect each packet loss. When the ACK for the first

retransmitted segment is received only then can we deduce

which other segment was lost.

E. TCP Sack

Fast retransmission and fast recovery can only handle

one packet loss from one window of data. TCP may

experience poor performance when multiple packets are lost

in one window. To overcome this limitation, recently the

selective acknowledgement option (SACK) is suggested as
an addition to the standard TCP implementation.

TCP with “Selective Acknowledgments” is an extension

of TCP Reno and it works around the problems face by TCP

RENO and TCP New-Reno, namely detection of multiple

lost packets, and re-transmission of more than one lost

packet per RTT. SACK retains the slow-start and fast

retransmits parts of RENO. It also has the coarse grained

timeout of Tahoe to fall back on, in case a packet loss is not

detected by the modified algorithm. SACK TCP requires

that segments not be acknowledged cumulatively but should

be acknowledged selectively. Thus each ACK has a block

which describes which segments are being acknowledged.
Thus the sender has a picture of which segments have been

acknowledged and which are still outstanding. Whenever

the sender enters fast recovery, it initializes a variable pipe

which is an estimate of how much data is outstanding in the

network, and it also set cwnd to half the current size. Every

time it receives an ACK it reduces the pipe by 1 and every

time it retransmits a segment it increments it by 1.

Whenever the pipe goes smaller than the cwnd window it

checks which segments are un received and send them. If

there are no such segments outstanding then it sends a new
packet. Thus more than one lost segment can be sent in one

RTT.

Problems:

The biggest problem with SACK is that currently

selective acknowledgements are not provided by the

receiver to implement SACK we’ll need to implement

selective acknowledgment which is not a very easy task.

F. High-speed TCP (HSTCP)

Because High-speed TCP's modified response function

would only take effect with higher congestion windows,

High-speed TCP does not modify TCP behavior in

environments with heavy congestion, and therefore does not

introduce any new dangers of congestion collapse. High-

speed TCP improves the performance of TCP in high-

bandwidth environments. High-speed TCP
(HSTCP)deserves special attention as it is engineered to

behave along a similar response function as standard TCP,

hut scaled up to meet the demands of higher window sire at

higher path loss probability

High Speed TCP (HSTCP) is a modification proposed

by S. Floyd to the TCP response function in order to acquire

faster the available bandwidth (and faster reach full

utilization of the link) in high bandwidth-delay product

networks. The targeted network environments for HSTCP

are low packet loss rate networks, therefore HSTCP

proposes a faster congestion window increase compared to

TCP. High Speed TCP’s modified response function only
takes effect with higher congestion window. It does not

modify TCP behavior in environments with heavy

congestion, and therefore does not introduce any new

dangers of congestion collapse.

G. Compound TCP

Compound TCP is a TCP variant protocol offering
congestion control solution for high-speed and long distance

networks. The key idea of CTCP is to add a scalable delay-

based component to standard TCP. This delay-based

component has a scalable window increasing rule that not

only can efficiently use the link capacity, but can also react

early to congestion by sensing the changes in RTT. If a

bottleneck queue is sensed, the delay based component

gracefully reduces the sending rate. This way, CTCP

achieves good RTT fairness and TCP fairness.

Compound TCP(C-TCP) is widely deployed as it is the

default transport layer protocol in the Windows operating
system. The Compound protocol aims to use both queuing

delay and packet loss as feedback to regulate its flow and

congestion control algorithms. Compound maintains both

cwnd (the loss window) and dwnd (the delay window). The

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 30 | P a g e

loss window is the same as in the standard TCP Reno

algorithm, which aims to control the loss based component.

CTCP can efficiently use the network resource and achieve

high link utilization. In theory, CTCP can be very fast to

obtain free network bandwidth, by adopting a rapid increase

rule in the delay-based component, e.g. multiplicative
increase. CTCP has similar or even improved RTT fairness

compared to regular TCP. This is due to the delay-based

component employed in the CTCP congestion avoidance

algorithm. It is known that delay-based flow, e.g. Vegas, has

better RTT fairness than the standard TCP CTCP has good

TCP-fairness. By employing the delay based component,

CTCP can gracefully reduce the sending rate when the link

is fully utilized. In this way, a CTCP flow will not cause

more self-induced packet losses than a standard TCP flow,

and therefore maintains fairness to other competing regular

TCP flows.

III. SIMULATION AND EMULATION BASICS

A. Simulation

Real-time simulation is a modeling technique where

components (simulator objects) reproduce a timing behavior

similar or equal to the timing behavior of the simulated

targets (simulated entities). During the development of an
application it interacts with the simulated environment in

the same way it would interact with a real one. This allows

testing it in different environments with relatively small

effort before. The network simulator NS-2 is a widely

accepted discrete event network simulator, actively used for

wired and wireless network simulations. It Supports an

array of popular network protocols and popularly used in the

simulation of routing and multicast protocols, and is heavily

used in ad-hoc research. It has an emulation feature, i.e. the

ability to introduce the simulator into a live network using a

soft real-time scheduler which tries to tie the event

execution within the simulator with the real-time.

 Fig.2: Network Animator

NS2 is an open-source simulation tool that runs on

Linux. It is a discreet event simulator targeted at networking

research and provides substantial support for simulation of

routing, multicast protocols and IP protocols, such as UDP,

TCP, RTP and SRM over wired and wireless (local and

satellite) networks. It has many advantages that make it a

useful tool, such as support for multiple protocols and the

capability of graphically detailing network traffic.

Additionally, NS2 supports several algorithms in routing

and queuing.

B. Emulation

Network emulation and simulation are widely used to

develop, test, and debug new protocols, to explore and study

a specific network-related research issue, or to evaluate the

performance of an existing protocol or a scheme. Network

emulation is the execution of real network protocol
implementation code in a controllable and reproducible

laboratory network environment. Unlike network

simulation, the protocols and applications as well as the

interaction between protocols are “real”. Network traffic

physically traverses the emulation environment, in which

underlying protocols are tested and evaluated against user

defined network conditions and traffic dynamics, such as

packet latency, link bandwidth, packet drop rate, Bit Error

Rate (BER), and link failure Network emulators are

important tools for doing research and development related

to network protocols and applications. With network
emulation it is possible to perform tests of realistic network

scenarios in a controlled manner, which is not possible by

only using real network devices without emulation

capabilities.

IV. SIMULATION RESULTS

We have installed Network Simulator 2 (NS2) on Linux

Ubuntu 12.04 LTS. We have run the TCL scripts of the

different TCP variants Tahoe and Reno. Simulation results

are as follows:

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 31 | P a g e

 Fig.3: Tahoe TCP

Fig.4: Reno TCP

V. CONCLUSION

TCP Tahoe does not deal well with multiple packet drops

within a single window of data. TCP Reno introduced major
improvements over Tahoe by changing the way in which it

reacts to detecting a loss through duplicate

acknowledgements. The idea is that the only way for a loss

to be detected via a timeout and not via the receipt of a

DUPACK is when the flow of packets and ACKs has

completely stopped - This would be an indication of heavy

congestion.

VI. FUTURE WORKS

 We have compared the TCP TAHOE and RENO and
concluded that the RENO has improved the performance.

But Reno encounters several problems with multiple packet

losses in a window of data (usually in the order of half a

window). We could do a lot of work further in the research

like working with readings obtained from other algorithm

like New Reno, Sack, Westwood, Vegas, Compound, HS-
tcp etc. This usually happens when invoking Fast

Retransmit and Fast Recovery. This protocol comes as

modification to the Reno but has not found implementation.

We could get their readings and idea about the improvement

factor with that protocol. We could modify the source code

of the protocol itself in linux as it is basically a C program.

 The modification in the window size and type and
number of acknowledgement given will cause a radical

change in the data rate, They were kept to give the best rates

when made but with the development in the communication

technology and services the modification can bring about a

good change in the outcome. We could get the idea that

which factor is the change in the specialized protocol like

Westwood and Vegas and so on (as mostly they have only

an algorithm that increases the throughput) and can look at

the modification they have and we can cumulatively add this
algorithm and can cause modifications in one protocol and

cause a new protocol with much better throughput. Severe

testing of each protocol can be done with Network Emulator

software. Herein we have concentrated on the basic two

network parameters delay and drop rate we can work with

many different parameters with this emulation.

ACKNOWLEDGMENT

 We would like to express our sincere gratitude and
gratefulness to our professor Mr Kapil Raviya for providing

us with all sorts of basic ideas and techniques essential for

carrying out this project work from the very beginning to

the end and enabled us to present this dissertation in this
form. The teaching staffs also deserve our sincere thanks for

sharing their discussion and exchange of ideas.

 Lastly, we would like to extend our sincere gratitude to
the known and unknown writers of the books and references

that has been taken during the preparation of this project

work.

VII. REFERENCES

[1] Hardik V. Miyani , Vishv B. Kukadiya, Mr. Kapil S. Raviya,

Mr.Dhrumil Sheth , "Performance Based Comparision Of TCP
Variants ‘TAHOE, RENO, NEWRENO, SACK’ In NS2
Using LINUX PLATFORM"

[2] Yuan-Chen Lai & Chan -Li Yao , "The Performance
Comparison between TCP Reno and TCP Vegas"

[3] I Abdeljaouad, H. Rachidi, S. Fernandes, A. Karmouch ,
"Performance Analysis of Modern TCP Variants: A
Comparison of Cubic, Compound and New Reno

[4] R. D. Mehta, Dr. C. H. Vithalani, Dr. N. N. Jani , "Evaluation
Of TCP Variants – ‘RENO’ and ‘SACK’ On ‘REAL TEST
BED’ Using EMULATOR – ‘NISTNET’"

[5] Habibullah Jamal, Kiran Sultan, "Performance Analysis of
TCP Congestion Control Algorithms"

[6] D. M. Lopez-Pacheco & C. Pham, "Performance comparison
of TCP, HSTCP and XCP in high-speed, highly variable-
bandwidth environments"

[7] Madhvi A. Bera, Bhumika S. Zalavadia, Rashmi Agrawal,
"Effectuation of TCP Agents And Equivalence Of Outcome
With Different TCP Variants"

[8] Mr Devang G. Chavda, Prof. Ridhdhi I. Satoniya,
"Performance Evaluation of TCP in the Presence of UDP in
Heterogeneous Networks by using Network Simulator 2"

[9] Haseen Rahman, Krishnamurthy Giridhar, Gaurav Raina,
“Performance analysis of Compound TCP with AQM”

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 32 | P a g e

[10] Kun Tan Jingmin Song Qian Zhang, Murari Sridharan, “A
Compound TCP Approach for High-speed and Long Distance
Networks”

[11] Damien Phillips & Jiankun Hu, “ANALYTIC MODELS FOR
HIGHSPEED TCP FAIRNESS ANALYSIS”

[12] http://www.icir.org/floyd/hstcp.htm

[13] http://www.isi.edu/nsnam/ns/

[14] http://www.isi.edu/nsnam/ns/ns-emulation.html

[15] http://www.linuxjournal.com/article/5929

Mr. Harshit B. Parmar has
completed his Diploma Engineering
in Electronics & Communication
from Lukhdhirji Engineering
College, Morbi, Gujarat, India. He
is currently pursuing Bachelor of
Engineering in Electronics &
communication at C.U.Shah college
of Engineering & Technology,
Wadhwan, Gujarat, India. His area
of research is in Digital Electronics,

Embedded Systems & Networking.

Mr. Kapil S. Raviya has completed
his bachelor and master’s degree in
the Electronics & Communication
Engineering from Saurashtra
University and Gujarat technological
university Gujarat, India and he is
currently pursuing his Ph.D. in the
same discipline from C.U.Shah
University, Wadhwan, Gujarat. His
Area of research is image processing

and computer vision system. He is currently working as an
assistant professor in the department of electronics &
communication engineering at C.U.Shah College of
engineering and technology. He has presented 4 national
and international papers and published 10 international
papers. He has published a book titled Performance
Evaluation of disparity map of stereo images with Lambart
Publishing house, Germany. His area of interest is Image
and video processing, Digital signal processing.

