
IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 33 | P a g e

Effective System analysis and design by using the Unified

Modeling Language (U M L)
Daljeet Singh1, Palak Mahajan1, Vivek Kumar1

1Guru Nanak Dev Engineering College, Ludhiana- 141006, Punjab, India

Abstract—This paper elaborates all the design and

analysis process of effective software development in the

field of Computer Science and Engineering. There are three

models under unified modeling Language in which all the

diagrams of unified modeling Language are well explained.

It is important to differentiate the UML model and the all set

of diagrams of a system to be developed. A diagram is a
partial graphic representation of a system's to be developed.

The set of diagrams need not completely cover the model

and deleting a diagram does not change importance of the

model.

Keywords— UML; Class Diagram; Genralisation;

Relationship;Aggregation.

I. INTRODUCTION
This UML stands for Unified Modeling Language

which is used in object oriented software engineering.
Although typically used in software engineering it is a rich
language that can be used to model an application
structures, behaviour and even business processes UML is
intentionally process independent and could be applied in
the context of different processes. Still, it is most suitable
for use case driven, iterative and incremental development
processes. An example of such process is Rational Unified
Process (RUP). In this paper we discuss various diagrams of
UML

II. CLASS MODELING

A. Class Diagras

The class diagram is the main building block of object
oriented modeling. It is used both for general conceptual
modeling of the systematics of the application, and for
detailed modeling translating the models into programming
code. Class diagrams are fundamental to the object
modeling process and model the static structure of a system.

B. Objects

Objects are model elements that represent instances of a
class or of classes. We can add objects to your model to
represent concrete and prototypical instances. Concrete
instances represent an actual person or thing in real world.
For example, a concrete instance of a Customer class
represents an actual customer. A prototypical instance of a
Customer class contains data that represents a typical
customer.

C. Relationship

 In UML, a relationship is a connection between model

elements. A UML relationship is a type of model element

that adds semantics to a model by defining the structure and

behavior between model elements.

Fig.1: Example of Class diagram

Fig.1 shows a class diagram from our case study with the

classes customer, ticket, and coupon, and their associations:

Looking at the class diagram in Figure 1, you can read the

association between the classes customer and ticket as

follows:

o One (this sentence always begins with "one") object of

the first class has an association with a number of
objects of the second class.

The appropriate values from the diagram have to be

inserted into this first abstract formulation, which can be

universally applied. The name of one class is customer; the

name of the other class is ticket. The name of the

association is owns.Since associations usually are not

directional, meaning usually go both directions, our

association also has a meaning in the other direction:

D. Generalization

The Generalization relationship indicates that one of the
two related classes (the subclass) is considered to be a

specialized form of the other (the super type) and superclass

is considered as 'Generalization' of subclass. An exemplary

tree of generalizations of this form is found in biological

classification: human beings are a subclass of simian, which

are a subclass of mammal, and so on.

http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/Biological_classification
http://en.wikipedia.org/wiki/Biological_classification
http://en.wikipedia.org/wiki/Human_beings
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Mammal

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 34 | P a g e

E. Inheritnce

Inheritance is a mechanism by which more specific

classes (called subclasses or derived classes) incorporate

structure and behavior of more general classes (called super

classes or base classes).

F. Association

An association represents a family of links. Binary

associations (with two ends) are normally represented as a

line. An association can be named, and the ends of an

association can be adorned with role names, ownership

indicators, multiplicity, visibility, and other properties.

G. Aggregation

Aggregation is a variant of the "has a" association

relationship; aggregation is more specific than association.

It is an association that represents a part-whole or part-of

relationship.

H. Constarints

 A constraint is a packable element which represents one
conditions, restriction and assertion related to some element

or several elements. For example, operation can have pre-

condition and/or post-condition constraints. Constraint

could have an optional name, though usually it is

anonymous. A constraint is shown as a text string in curly

braces according to the following syntax:

Constraint:= '{' [name ':'] Boolean-expression '}'

I. Packages

A package in the Unified Modeling Language is used "to

group elements, and to provide a namespace for the grouped

elements". A package may contain other packages, thus

providing for a hierarchical organization of packages.

III. STATE MODELLING

A State chart diagram describes a state machine. Now to

clarify it state machine can be defined as a machine which

defines different states of an object and these states are

controlled by external or internal events.

A. Events

The term event refers to the type of occurrence rather
than to any concrete instance of that occurrence. For
example, Keystroke is an event for the keyboard, but each
press of a key is not an event but a concrete instance of the
Keystroke event. The different types of events are:

 Signal event: It is the event of sending or receiving
signal usually we are more concerned about the receipt
of signal because of the causes effects in the receiving
objects.

 Change event: Change event is an event is cost by the
satisfaction of Boolean expression content intent of a
change is event that the expression is continuously.
Whenever the expression change from true event
happen.

 Time event: Time event is an event cost by the
occurrence of an absolute time of the time interval.

B. States

A state captures the relevant aspects of the system's

history very efficiently. For example, when you strike a key

on a keyboard, the character code generated will be either an

uppercase or a lowercase character, depending on whether

the Caps Lock is active. Therefore, the keyboard's behavior

can be divided into two states: the "default" state and the

"caps locked" state.

C. Transitions and Conditions

In UML modeling you can add transitions to a state

machine diagram to show how an object changes state .A

trigger, a guard condition and an effect are the three optional

parts of a transition .Add a trigger to a transition to show

that an event must occur for a transition to initiate. Add an

effect to a transition to show that an object performs a

particular activity when a guard condition is satisfied.

D. State and Behaviour

State diagram behavior can be understood by following

description:

 Activity effect: An effect is a reference to a behavior

that is executed in response to an event. For example,

disconnected phone line might be an activity that is

executed in response to an on Hook event.

 Do-activities: A do activity is an activity that continues

for an extended time. By definition, a do activity can

only occur within a state and cannot be attached to a

transition. For example, the warning light may flash

during the paper jam state for a copy machine.

 Entry and Exit activity: As an alternative to showing

activities on transitions, one can build activities to entry

or exit from a state.

E. Concurrency

The concurrent sections of the state diagram are places

in which at any point, the given order is in two different

states, one from each diagram. When the order leaves the

concurrent states, it is in only a single state. We can see that

an order starts off in both the Checking and Authorizing

states. If the "check payment" activity of the Authorizing

state completes successfully first, the order will be in the

Checking and Authorized states. If the "cancel" event
occurs, the order will be in only the Cancelled state.

IV. INTERACTION MODELLING
An interaction is a set of messages exchanged within

collaboration. One uses interaction model to dynamic aspect
of collaborations is presenting societies of object playing
specific roles. Therefore every time there is collaboration
between two objects there is an interaction.

http://en.wikipedia.org/wiki/Association_(object-oriented_programming)
http://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)
http://www.uml-diagrams.org/class-diagrams.html#operation
http://en.wikipedia.org/wiki/Unified_Modeling_Language

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 35 | P a g e

A. Use Case Model

The use-cases will define the business services that the
system must provide. Use-cases do not however define or
describe how this will be achieved. The class diagram is the
static view of the required system. The class diagram
presents the building blocks (classes) and illustrates which
classes interact but does not define how they interact. The
interaction model defines the way in which services are
provided by the objects within the system.

B. Sequence and Activities

The sequence diagram is having four objects (Customer,
Order, Special Order and Normal Order).The following

diagram has shown the message sequence for Special

Order object and the same can be used in case of Normal

Order object. Now it is important to understand the time

sequence of message flows. The message flow is nothing but

a method call of an object. The first call is send Order

() which is a method of Order object. The next call is

confirm () which is a method of Special Order object and the

last call is Dispatch () which is a method of Special

Order object. So here the diagram is mainly describing the

method calls from one object to another and this is also the
actual scenario when the system is running.

V. REFERENCES
[1] Abello A., Samos J., & Saltor F., “A Multidimensional

Conceptual Model Extending UML”, Journal of Information
System, Vol.31Issue 6, PP. 541-567, 2006.

[2] Ghislain L., Valery B., “Estimating Software Size with UML
Models”, In the Proceedings of Conference Montreal,
Quebec,Canada, C3S2E; Vol. 290, 2008.

[3] RUMBAUGH, J. JACOBSON, I. and BOOCH, G. (1999):
The Unified Modeling Language Reference Manual. Reading,
Mass, Addison Wesley Longman Inc.

[4] Greedy B.,“Object-Oriented Analysis and Design with
Application”, Second Edition. Addison-Wesley, 1994.

[5] Ņikiforova O., Sējāns J., Černičkins, “A Role of UML Class
Diagram in Object-Oriented Software Development”, Applied
computer systems. Vol.47, 2011, pp.65-74. ISSN 1407-7493

[6] Bansiya J., and Davis C.: “A Hierarchical Model for Object-
Oriented Design Quality Assessment”, IEEE Transactions on
Software Engineering, vol. 28, no. 1, pp. 4-17, 2002.

[7] E. Arisholm, L. Briand, S. Hove, and Y. Labiche. “The
impact of uml documentation on software maintenance” An
experimental evaluation. Software Engineering, IEEE
Transactions on, 32(6):365–381, 2006.

[8] A. Fern´andez-S´aez, M. Genero, and M. Chaudron. “Does
the level of detail of uml models affect the maintainability of
source code?” In Proceedings of EESSMod 2011, 2011.

[9] M. Genero, J. Cruz-Lemus, D. Caivano, S. Abrah˜ao,
E. Insfran, and J. Cars ı́. “Assessing the influence of
stereotypes on the comprehension of uml sequence
diagrams” A controlled experiment. Model Driven
Engineering Languages and Systems, pp 280–294,
2008.

[10] Hoeben, F., “Using UML Models for Performance
Calculation”, In Proceeding of WOSP 2000, p.p. 77-82,
2000

Singh Daljeet received his B-Tech
degree in Computer Science and
Engineering from Punjab Technical
University, Jalandhar College, B.C.E.T,
Ludhiana, Punjab, India, in 2008, the M-
Tech, degree in Computer Science and
Engineering from Punjab Technical
University, Jalandhar, College, Guru
Nanak Dev Engineering College,
Ludhian, Punjab, India in year 2012. He is

a Assistant Professor at present, with Department of Computer
Science and Engineering, in Guru Nanak Dev engineering
College. His research interests include Software Engineering,
Software Metrics, UML, Object Oriented Paradigm, Object
Oriented Metrics. At present, He is engaged in Research of UML
diagrams simplifications.

Kumar Vivek, received his graduate
degree as B.C.A and currently doing
MCA from Guru Nanak Dev
Engineering College, Ludhian, Punjab,
India

Mahajan Palak, received his graduate
degree as B.C.A and currently doing
MCA from Guru Nanak Dev
Engineering College, Ludhian,
Punjab, India

