
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 807 | P a g e

Evaluation of Multiversion Concurrency Control Algorithms
1Sonal Kanungo, 2Rustom. D. Morena

1Smt. Z. S. Patel College of Computer Application, Veer Narmad South Gujarat University, Surat
2Veer Narmad South Gujarat University,Surat

Abstract- This paper presents a simulation study of the

execution of different multiversion concurrency control

algorithms in standard environment. Several Multiversion

concurrency control schemes has been proposed till date. In

this paper, we are discussing comparison of three Multiversion

schemes; Multiversion Timestamp Ordering, Multiversion

2PL Mixed Method and Multiversion 2PL with Certify Lock

(2V2PL) on the premise of their performance, locking

mechanism and deadlocks through simulations. Analysis of

algorithms is important because, it discovers the
characteristics for evaluation and compare it with each other

for the same application. The analysis of an algorithm can

help us understand it better and can also propose new

improvements.

Keyword- Multiversion; Concurrency control; Serialization;

Rollback; Deadlock; Abort; Update; Readonly

I. INTRODUCTION

The Multiversion concurrency control provides flexible
methods which permit Read-only transaction to Read slightly

old, but still consistent version of the data. Read operations

that would be rejected in other techniques can still be accepted

by Reading an older version of the item. Multiversion

protocol never overwrites old values and these old values or

versions are always available to tardy Reads [5]. Multiple

versions item helps the scheduler to avoid rejecting operations

that arrive too late. A Read normally rejects because the value

it was supposed to read has already been overwritten [4]. This

rejection of Read can be avoided by keeping old versions; a

late Read can be given an old value of a data item, even

though it was “overwritten” [3].
The Multiversion concurrency control algorithm produces a

new copy or version of data item with each Write on a data

item. A list of versions of data item with the history of values

is kept. The existence of multiple versions is only visible to

the scheduler, not to user transactions [3].

A. Multiversion Technique Based on Timestamp Ordering

Reed's Multiversion timestamp ordering scheme solves

problem of deadlocks with 2PL, by ordering transactions and

aborting transactions that access data out of order. This

increases the concurrency of the system by never making an

operation block [2].

The Timestamp Ordering maintain several versions of each

data item; each version keeps the value of version and the

following two timestamps; Read Timestamp and Write

Timestamp. Read timestamp is the largest of all the

timestamps of transactions that have successfully read the

version and Write timestamp is the timestamp of the

transaction that wrote the value of version. Read operation

reads the version with the largest timestamp. The timestamp

of the reading transaction is added to the item. Write operation

creates a new version of data items. The content field of this
version holds the value written by transaction.

The transaction can commit only when, its timestamp is

greater than last Read and Write timestamp of data else this

transaction will abort and rollback. Rollback and abort also

happen when the transaction is attempted to write a version

data that should have been Read by another transaction. It will

abort and restart in basic timestamp ordering and this rollback

will cause cascading rollbacks [9]. Old values are never

overwritten therefore Reads are always available. Writes do

not overwrite each other so Reads can read any version which

gives flexibility to Multiversion concurrency control [3].
B. Multiversion Locking

Multiversion locking protocol combines the advantages of

Multiversion concurrency control with two-phase locking [3].

When a transaction is written on a data item, it always creates

a new version of data items. This Write will not overwrite the

old value of the item but creates a new version and keeps both

versions. This transaction sets an exclusive lock on a data item

that prevents other transactions from reading or writing on the

same data item but allows other transactions to Read the

previous committed version of this data item [14]. This gives

flexibility to other transactions to Read with the option of

supplying it to either version; whichever will serve best
serializability [7]. The second version is created when a

transaction acquires a Write lock on the item. Keeping two

versions of each item; one version must always have been

written by some committed transaction. Since Writes do not

overwrite each other, Reads can read any version, which

provide more flexibility in controlling the order of Reads and

Writes. This gives a “late” Read operation the chance to Read

a value which would have been erased in a single-version

system [14].

1)Multiversion Two Phase Locking with Certify Lock
(MV2PL)

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 808 | P a g e

This Multiversion supports two versions. When a transaction

issue a Write; this Write does not overwrite the old value of

the item but create a new one and keep both versions. If

subsequently another transaction wants to read data, we have

the option of supplying to it either version [7].

Each Write on a data item produces a new copy of the data
and Read on data item selects one of the versions of data item.

The transaction, which is written on a data item, but it is not

committed yet, then the two versions of data are present; one

is ‘before image’ and the other is ‘after image’. As soon as the

transaction commits, the before image can be dropped. Since

the new version of the data is now stable and old versions are

no longer needed and there is no need to maintain it [1].

MV2PL supports multiple-mode locking scheme which needs

three locking modes for an item; Read, Write, and Certify

[14]. MV2PL allows other transactions to Read the old

committed version of the data with Write lock. The transaction

can write the value of data, without affecting the value of the
committed version data.

When this Write will be ready to commit, it must obtain

a Certify lock which is not compatible with Read locks, that

means the next read operation is not granted to this data. The

transaction has to delay its commit until all Reading

transactions released the write lock item then obtain the

Certify locks [8]. Once the Certify locks which are exclusive

locks are acquired, the committed version of the data item is

set to the value of “new” version data and “old” version is

discarded then only Certify locks will release. Therefore,

certify lock is not compatible with Read locks [15]. Certify
lock is used to delay the commit of a transaction, if there is

still any active reader for data items which are about to be

overwritten.

Certify locks only conflict with Read locks and other Certify

locks [15]. Concurrency can be improved by Certify locks.

When a transaction Writes an entity and then successfully

terminates. The “after” value of the entity replaced the

“before” value as the "official" value in the database.

Therefore “before” value must require terminating

successfully and “after” values are still retained in the

database. After a transaction terminates, the concurrency

control need no longer keep track of information about the
transaction [1].

2)Multiversion Mixed Method

In traditional 2PL, Read-Write conflicts block each other.

Write lock on a data item always prevents transactions from

obtaining Read locks on the same data item. In the standard

locking scheme, the Read lock is shared and Write lock is an

exclusive lock. Once a transaction obtains a Write lock on an

item, no other transactions can access that item. This

algorithm uses Multiversion Timestamping to process Read-

only transactions (queries) and Multiversion locking to

process general transactions (updates). Querying (Reading)
data don’t conflict with locks acquired for writing data and so

Query never blocks Updaters and Updaters never blocks

Query [6].

Multiversion 2PL protocol differentiates between Read-only

transactions and Update transactions. The Update transactions

follow a rigorous two-phase locking where all locks are

released only in the end of the transaction at commit time [3].
A single timestamp is kept for each version of a data item.

When an Update transaction, Reads or Writes a data item it

locks the item just as it would in two-phase locking and it

Reads or Writes the most recent version of the item. An

update transaction wants to Reads an item it gets shared lock

on the item and Reads the latest version of that item and when

an Update transaction wants to Write an item, it first gets an

exclusive lock on the item and then creates a new version of

the data item. With each Writes on a data item, a new version

is created. It sets a lock on data and prevents other transactions

from Reading or writing a new version. At the same time,

other transactions are allowed to read the previous version of
the data. Thus, Reads are never delayed [10]. Since the

timestamp associated with a version is the commit timestamp

of its Writer, a Read-only transaction is thus made to only

Read versions that were written by transactions that

committed before Read even began running [7].

The "before" or old value, and the "after" or new value which

creates after commit of Write operation. Concurrency can be

increased by allowing other transactions to Read the before

values of a given transaction. Some systems have a permanent

copy of the before value for recovery purposes [1]. When

Read-only transactions start execution, they assign a
timestamp by reading the current value. Multiversion

timestamp-ordering protocol is used for Reads [2]. Read-only

transactions never wait for locks. Multiversion two-phase

locking also ensures that schedules are recoverable and

cascade less [14]. Queries never delay or abort updaters, and

updaters never abort queries.

II. RELATED WORK

CHRISTOS H. PAPADIMITRIOU, PARIS C.

KANELLAKIS, NATHAN GOODMAN DESCRIBED

VARIOUS CONCURRENCY CONTROL METHODS USING

MULTIPLE VERSIONS [2,3,5] Improved Multiversion

concurrency control is given with effective necessary and

sufficient conditions for an execution to be l-SR concurrency

control and extended concurrency control theory. This

condition uses the concept of version order. They gave a

graph structure, Multiversion serialization graphs (MVSGs),

that helps to check these conditions and applied the theory to

three Multiversion concurrency control algorithms. One

algorithm uses time stamps, one uses locking, and one

combines locking with timestamps.

PHILIP A. BERNSTEIN and NATHAN GOODMAN [3]

This paper had presented a theory for analyzing the

correctness of concurrency control algorithms for

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 809 | P a g e

Multiversion database. They presented some new

Multiversion algorithms analyzed these new algorithms and

several previously published ones. This paper gives reviews

concurrency control theory for nonmultiversion databases

and extends the theory to Multiversion databases.

RICHARD E. STEARNS AND DANIEL J.
ROSENKRANTZ [1] This paper deals with the Write of the

database. Write of a database entity is both the "before" or

old value, and the "after" or new value. Two schemes for

producing such controls are given, first scheme works in a

system where processes are committed on termination, and

the other for systems where commitment happened later.

They introduce some basic terminology and model of a

concurrent, distributed database system. This paper

developed a series of design principles which applied to all

designs. Two concurrency control schemas are introduced,
one is for the case COMMIT=CLOSE and the other for

COMMIT=TERMINATE.

D. AGRAWAL, V. KRISHNASWAMY [6] This paper

states that in database systems consisting of abstract data

objects where blind-Write operations are dominant, for non-

interfering execution of Write-only transaction is useful.

Transaction ‘s operations do not observe the states of the

objects; instead they “blindly” modify the object states. The

transactions should be classified into three categories: Read-
only, Read-Write, and Write-only transactions. Multiversion

data can also be used to eliminate or minimize the

interference between the Read-Write and Write-only

transactions. A separate treatment of Write-only transactions

is given. In this paper, a version control mechanism is given

that minimizes the interference between the Read-Write and

Write-only transactions.

MICHAEL J. CAREY and WALEED A. MUHANNA [9]

This paper examined the performance and storage overheads

of three Multiversion concurrency control algorithms,
Reed’s Multiversion timestamp ordering algorithm, the CCA

Multiversion locking algorithm, and a Multiversion variant

of Kung and Robinson’s serial validation algorithm. Authors

compared the performance of the algorithms to their single-

version counterparts like timestamp ordering, two-phase

locking, and serial validation, respectively. The study of

these algorithms was based on a detailed simulation model

of a centralized (i.e., single-site) database management

system.

III. METHODOLOGY FOR EXPERIMENTAL
ANALYSIS

Concurrency control algorithms are described for simulation

worked with the same set of data and transaction’s operation is

applied to each algorithm. There is transaction generator

which generate Readonly and Update transactions. Update

transaction has read-set and a write-set. These determine the

data item that the transaction will read and write during its

execution.

A. Multiversion Timestamp Ordering

We used System clock for two timestamps; Read Timestamp

and Write Timestamp for each data. When the transaction is

entered in system timestamp is given to the transaction. When

transaction wants to Read some data, this Read timestamp will

select time stamp equal to Write’s timestamp of latest

committed version of data else it will Read the old version.

This Read transaction’s timestamp will have assigned as Read

timestamp. Read never fails in this methodology.

When transaction wants to Write on some data, transactions

timestamp should be greater from last Read and Write, stamp

of given versions’ timestamp and new version is created, it
will not overwrite the old version. This Write will succeed and

Write transaction’s timestamp will become new Write

timestamp and Read stamp of this new version.

In our experiments, we observed that nearly one fourth of

transactions are committed while others are roll backed. We

did not find any wait here. Large number of Restarts are

generated because of Rollbacks took place in a large number.

If Write is performed on some data and other requests to

update that data, not only the operation wills Rollback whole

transaction will Rollback. This effect is known as cascading

Rollback. This protocol is free from conflict serializability, but
a lot of cascading rollbacks are generated.

B. Multiversion Two-Phase Locking Using Certify Locks

Version 2PL

This protocol works same as traditional two phase

Multiversion protocol the only difference is a delay in

unlocking. When a Transaction’s operation enters, it first

checks whether it has a lock or no-lock on the data. In case no-

lock is found in the data, a lock is applied to the data. This

lock can be shared (Read S) or exclusive (Write X). If all the

operations got locks new version is created (not committed)

and the old version is still available for Read. When the

transaction is ready to commit; X lock Converts into C lock,
this is incompatible to Read locks. All Read-only transactions

are committed first, then only Update transactions can

commit. After that commit takes place, unlocking is

performed and the old version is converted into a new version.

When Write operations got an X lock on the data, this goes to

wait. We ran these transactions, we found that only very less

transactions are committed while others stuck largely in

deadlock and Rollbacked.

As the X lock is converted in to Certify lock and Certify lock

is not compatible with Read lock, Read operations will send to

wait, this will create more deadlocks. We found that few
transactions were committed and number of waits was

generated. This protocol is free from conflict serializability.

C. Multiversion Mixed Method

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 810 | P a g e

Read-only and Update transactions are predefined. Update

transaction operations are a combination of Read and Write.

An update transaction follows rigorous 2PL. When an Update

Transaction’s operation enters, it first checks whether it has a

lock or no-lock on the data. In case no-lock is found in the

data, a lock can apply to the data. This lock can be shared
(Read S) or exclusive (Write X). When a transaction is

committed, unlocking is performed and new version is created

and transaction counter will increase by one. Else, the

operation goes to wait which means any of the two or both

operations have found lock on that data.

Read-only transactions that start after Update, it will Read the

values updated by a transaction. Read-only transactions that

start before Update, it will Read the value before the update

starts.

We ran these transactions, compared to certify lock more

transactions are committed while others are either in abort and

stuck into deadlock. We found that few transactions were
committed and number of waits was generated. This protocol

is free from conflict serializability. However, we found

overheads of the lock.

Read-only will Read old value as the new value of Update’s

write is not committed but Read of Update will have to wait as

Writing is done by Update transaction. Read-only doesn’t

mind Reading old value.

IV. DISCUSSION

In this section we present detail study of experiment, which

describe the behavior of all the concurrency control

algorithms. On the basis of above experiments we are giving a
comparison of Multiversion concurrency control for all 3

methods.

A. Performance

1) Multiversion Timestamp Ordering (MVTO)

scheduled in first-in-first-out (FIFO) fashion.

Transactions are conflict-free therefore they can Read

the same item at different times. Transactions do not

block each other which enhance concurrency.

Multiversion Timestamp ordering minimizes the

number of restarts as it allows Reading old version of

data that is written by another transaction and not

committed yet. The case where Reading is a more
frequent operation than writing, this protocol gives

better result. Blocked transaction rollback rather than

waits for access. While there is some drawback with

Multiversion Timestamp Ordering Protocol, two

potential disk accesses require for Reading of a data

item and updating the timestamp field. A sequence of

conflicting of short transactions causes repeated

restarting of the long transaction therefore there is

possibility of starvation of long transactions,

cascading rollbacks are also unavoidable.

The starvation problem occurs where a transaction might get
started and aborted many times before it finishes. When a

transaction restarts it will receives, a new startup time stamp

each time, so the timestamp ordering of such a pair reverses

every time one of them restarts. A pair of update transactions

wishing to concurrently Read and then Write a common object

can restart each other over and over again, and this “restart

loop” can persist indefinitely.
2) 2V2PL Transaction can read an item while another

transaction holds a Write lock on it. Keeping two

versions of each item; one version must always have

been written by some committed transaction. The

second version is created when a transaction acquires

a Write lock on the item. Since Writes do not

overwrite each other, Reads can Read any version.

Write locks will convert into Certify locks before

Commit. Certify locks conflict with Read locks. On

those data items where such Read locks exist, the

lock conversion is delayed until all Read locks will

release. Thus, Transaction could not commit until
there are no active Readers of data items it is about to

overwrite. It requires more storage to maintain

multiple versions of data item.

These lock conversions can lead to deadlock just as in

standard 2PL. When a transaction has a Read lock on data and

other transaction has a write lock on it. If the first transaction

tries to convert its Read lock to a Write lock and other

transaction tries to convert its Write lock to a Certify lock,

then the transactions are deadlocked. Read will also wait in

one condition, when there is a Certify-lock on data, and

transaction is greater than the time of that Certify-lock, then
this Read must wait until certify will release.

3) MV2PLMixed Method This protocol distinguished

Read and Updates and their effect on the database.

An update transaction locks the item Reads or Writes

just as it does in two-phase locking, and it Reads or

Writes the most recent version of the item.

Transactions block when they cannot obtain a lock,

and deadlock must be dealt with in one of the usual

ways. A new version is created when an item is

written. The transaction will commit and create

version, this y version of an item is stamped with the

commit timestamp of its creator. A Read-only
transaction wishes to access an item, without locking

it. The transaction, simply Reads the most recent

version of the item Since the timestamp related with

a version is the commit timestamp of its Writer, a

Read-only transaction only Reads versions that were

composed by transactions that committed before the

transaction even started running. Read-only

transactions are always successful. This is good

because it is safe for update-intensive applications.

B. Methodology

1) Multiversion Timestamp Ordering MVTSO does not
perform locking on operations and no transaction has

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 811 | P a g e

to wait for other, a Multiversion Timestamp protocol

ensures freedom from deadlocks. Read request never

fails and it is never made to wait. Conflicts between

transactions are resolved through rollbacks, rather

than through waits, this will result into cycle restarts,

which becomes more expensive. It avoids cascading
aborts, since transactions are only allowed to Read

the version that was written by a committed

transaction.

2) 2V2PL Two phase locking with certify lock

exclusive lock ‘X’ become certify ‘C’ when

transaction is Ready to commit. The rigorous locking

is performed that means both sharable and exclusive

locks will be unlocked after the commit of the

transaction. The transaction becomes committed only

when all certify locks are released. Certify locks,

delayed unlocking and unlocking is done until no

Read operation will be left. Certify locks in 2V2PL
behave much like Write locks in ordinary 2PL.

2V2PL’s certifies locks, delay Reads for less time

than 2PL’s Write locks delay Reads. Read locks,

delay a transaction’s certification in 2V2PL, which

improved concurrency of Reads but increase the

expense of delaying the certification. Read-Write-

Certify must still block Read requests when

certifying an update. Deadlocks can occur because

transactions go in the wait state. An updater can still delay a

query under one condition when a query Reads data

and updater has a certify-lock on it, and Read
transaction is greater than the time of that certify-

lock, then Read must wait until the transaction

certifies data.

3) Multiversion Mixed Method The transactions that

issue Reads but no Writes are called queries, while

those that issue Writes (and possibly Reads as well)

are called Updaters. Queries uses MVTO and Strict

2PL is used by updaters. Here all locks (shared and

exclusive) are held till commit/abort. Therefore, there

are fewer chances of Rollback and cascading

rollbacks. This will give best results to Query (Read)

transactions which doesn’t mind Reading old values.
While locking overhead, it inhibits concurrent

execution. It is inefficient for query-intensive

applications because of locking overhead, possibility

of deadlock and waits for locked data. In this method

queries, may Read out-of-date data. Tagging and

interpretation of timestamps on versions may add

significant scheduling overhead.

C. Rollback and Deadlock handling

1)Multiversion Timestamp Ordering Conflicts between

transactions are resolved through rollbacks, rather than

through waits. This may be an expensive method.

Multiversion timestamp-ordering scheme does not ensure

recoverability and cascadelessness. Timestamp ordering is

free from deadlocks. The timestamp protocol ensures freedom

from deadlock as no transaction ever waits.

2)2V2PL 2PL with Certify lock a transaction may lead to

deadlock while trying to convert its Write locks and may be
aborted during this activity. These locks could not release till

transaction become commit. 2PL and Certify lock (2V2PL)

have less cascading rollback as compared to Multiversion

Timestamp Ordering.

Lock conversions can lead to deadlock just as in standard 2PL.

A transaction has a Read lock on data and other transaction

has a write lock on this data, if the first transaction tries to

convert its Read lock to a write lock and another tries to

convert its write lock to a certify lock, then the transactions

are deadlocked.

3)Multiversion Mixed Method Queries and updaters never

delay each other. A query can always read the data it wants
without delay. Although updates may delay each other,

queries set no locks and therefore never delay updates. This is

in sharp contrast to 2V2PL, where a query may set many

locks. Deadlocks are found, but they are less as compare to

2V2PL.

V. RESULT AND ANALYSIS

The results of our experiments designed to examine the

performance of the multiversion concurrency control

algorithms. The algorithms are a mix of small update

transactions and larger read-only transactions. The relative

performance of the three multiversion algorithms behaves
over a range of update conflict probabilities with on number of

commit, abort and rollback.

No of

Transac

tions

No of

Com

mit

No

of

Ab

ort

No of

Rollb

ack

No

of

W

ait

No of

Deadl

ock

MV2

PL 100 28 72 32 56 44

MVT
SO 100 37 45 88 0 0

MV

MM 100 45 40 22 33 31

Table-1 Comparison of MV2PL MTSO MVMM

Above three methods performances have been compared

through analytic and simulation studies.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 812 | P a g e

Fig.1: Comparison of Concurrency Control Techniques

Fig.2: Number of Commit

Fig.3: Number of Rollback

These methods are usually based on exclusive/shared access to

abstract database objects. The more complex lock request

patterns are generated by relational queries, which need to be
incorporated in performance studies.

It is assumed that the database size remains fixed as the

transaction arrival rate is varied, which may not be necessarily

true, for dynamic environment these results may vary.

VI. CONCLUSION

Multiversion concurrency control algorithms can give

improvements in performance by allowing large Read-only

transactions to access previous or older versions of data items.

Multiversion schedulers are enhancing the performance of the

concurrency control component of a database. In this paper,
our findings based on different Multiversion protocols say that

Time stamping Multiversion protocol gives best result with

Read only transactions while Mixed Method and 2V2PL are

good for update intensive transactions. 2V2PL delays commit

as compare to 2PL and give more accurate results as it allows

reading of all read operations on certain data, then only Write

Lock will release, So Read operations can Read old values and

then Write will commit and data is assigned to the new value

of a particular data item. Multiversion Mixed method

differentiates Readonly and Update and give different

treatment and gives best results. The user may update each

version of the design independently. Therefore, query and
Update never block each other. An obvious drawback of

Multiversion techniques is that more storage is required to

maintain multiple versions of the items.

VII. REFERENCES
[1]. RICHARD E. STEARNS AND DANIEL J. ROSENKRANTZ,

“Distributed Database Concurrency Controls Using Before-
Values”, Computer Science Department, State University of
New York, C l981 ACM 0-89791-040-O/8 0/0400/0074.

[2]. CHRISTOS H. PAPADIMITRIOU, PARIS C. KANELLAKIS,

“ON Concurrency Control by Multiple Versions”, 1982 ACM
Publication.

[3]. PHILIP A. BERNSTEIN and NATHAN GOODMAN,
“Multiversion Concurrency Control-Theory and Algorithms”,
ACM Transactions on Database Systems, Vol. 8, No. 4,
December 1983, Pages 465-483.

[4]. SHOJIRO MURO, TIKO KAMEDA, TOSHIMI MINOURA,
“Multi-version Concurrency Control Scheme for a Database

System*”, JOURNAL OF COMPUTER AND SYSTEM
SCIENCES 29, (1984) Pages 207-224.

[5]. CHRISTOS H. PAPADIMITRIOU, “On Concurrency Control
by Multiple Versions”, ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1984, Pages 89-99.

[6]. D. AGRAWAL AND V. KRISHNASWAMY, “USING
Multiversion data for non-interfering execution of Write-only
transactions”, Proceedings of the 1991 ACM SIGMOD

international conference on Management of data ,1991, Pages
98 – 107.

[7]. HENRY F. KORTH, ABRAHAM SILBERCHATZ, S. SUDARSHAN,
“Concurrency Control: Database system Concepts (Forth
Edition)”, Page :591 -617.

[8]. RAMEZ ELMASRI AND SHAMKANT B. NAVATHE, “Multiversion
Concurrency Control Techniques:”, Pages 585-587.

[9]. MICHAEL J. CAREY and WALEED A. MUHANNA, “The

Performance of Multiversion Concurrency Control
Algorithms”, ACM Transactions on Computer Systems, Vol. 4,
No. 4, November 1986, Pages 338-378.

0

20

40

60

80

100

No of
Commit

No of
Abort

No of
Rollback

No of
Wait

No of
Deadlock

Comaprison of Concurrency Control
Techniques

MV2PL MVTSO MVMM

0

10

20

30

40

50

MV2PL MVTSO MVMM

No of Commit

0

20

40

60

80

100

MV2PL MVTSO MVMM

No of Rollback

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 813 | P a g e

[10]. AZER BESTAVROS, “Multi-version Speculative Concurrency
Control with Delayed Commit” Computer Science Department
Boston University, Boston, October 27, 1993.

[11]. BAOJING LU, QINGHUA ZOU, WILLIAM PERRIZO, “A
Dual Copy Method for Transaction Separation with

Multiversion Control for Read-only Transactions”, SA
C 2001, Las Vegas, NV, © 2001 ACM 1-58113-287-5/01/02.

[12]. GERHARDWEIKUM, GOTTFRIEDVOSSEN,
“TRANSACTIONAL Information Systems Theory,
Algorithms, and the Practice of Concurrency Control and
Recovery”, A volume in The Morgan Kaufmann Series in Data
Management Systems,2002, Pages 185–216.

[13]. CHANJUNG PARK, SEOG PARK, SANG H. SON,

“Multiversion Locking Protocol with Freezing for Secure Real-
Time Database Systems”, IEEE Transactions on knowledge
and data engineering, vol. 14, no. 5, September/October 2002.

[14]. K M PRAKASH LINGAM, “Analysis of Real-Time Multi
version Concurrency Control Algorithms using Serializability
Graphs”,2010 International Journal of Computer Applications
(0975 - 8887) Volume 1 – No. 21.

[15]. TIMOTHY MERRIFIELD, JAKOBER IKSSON,

“CONVERSION: Multi-Version Concurrency Control for Main
Memory Segments”, Eurosys’13 April 15-17, 2013, Prague,
Czech Republic Copyright 2013 ACM 978-1-4503-1994-
2/13/04.

[16]. Anand S.Jalal, S. Tanwani, A. K. Ramani: “Lecture Notes in
Computer Science:
Optimistic Concurrency Control in Firm Real-Time Databases,
Springer-Verlag Berlin Heidelberg 2005, Pages 487 – 492.

[17]. SONAL KANUNGO, R.D. MORENA, “Analysis and
Comparison of Concurrency Control Techniques”, International
Journal of Advanced Research in Computer and
Communication Engineering, Vol. 4, Issue 3, March 2015.

[18]. SONAL KANUNGO, R.D. MORENA, “Comparison of
Concurrency Control and Deadlock Handing in Different
OODBMS”, International Journal of Engineering Research &
Technology, Vol. 5 Issue 05, May-2016.

[19]. Marwa Mohamed, Mohammed B. Badawy, Ayman El-Sayed:

“Survey on Concurrency Control Techniques”, CAE, Volume
5,May 2016.

https://www.researchgate.net/scientific-contributions/2109819798_Marwa_Mohamed
https://www.researchgate.net/profile/Mohammed_Badawy3
https://www.researchgate.net/profile/Ayman_El-Sayed2

