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Abstract- The hugenumber of factors including economic, 

political, environmental, psychological, complex behavior of 

noisy and non-stationary data has made financial forecasting 

from time-series as one of the most interesting as well as most 

challenging problems. This study presents the use of variants 

of three most promising machine learning regression models 

i.e., Support Vector Machines (SVMs), Multiple Kernel 

Learning (MKL),and Extreme Learning Machine (ELM) for 

forecasting indexvalues of the commodity futures traded on 

the National Commodity & Derivatives Exchange Limited in 

India.The past studies concluded that, forecasting performance 

of models may vary using different performance evaluation 

measures (criteria). The objectives of this paper are to:  (i) 

empirically study and compare the performance of the 

different variants of three promising machine learning models, 

and (ii) apply multi-criteria decision making (MCDM) 

technique (Technique for Order Preference by Similarity to 

Ideal Solution i.e., TOPSIS) to rank the forecasting models. 

The results show that the use of exclusive performance 

measure may lead to untrustworthyconclusions;however this 

situation can be overcome by the use of multi criteria decision 

making techniques. 
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I. INTRODUCTION 

The financial market is a complex, evolutionary, and non-

linear dynamical system [1]. In the business environment, the 

ability to forecast a variety of different financial variables 

accurately and efficiently is necessary to ensure the 

development of proper strategies and to avoid the potential 

risk of financial losses [6]. The financial forecasting from time 

series data is considered as one of the most interesting and 

challenging problems because of huge number of factors like 

economic, political, environmental, and psychological, and the 

complex nature of data which govern the forecasting 

mechanism. In the recent years data mining techniques have 

been implemented successfully to provide improved decision 

supportto the stakeholders in the financial domainsuch as 

predicting the prices (values) of different financial 

instruments, bankruptcy threats, and credit scores.  

Forecasting financial time-series data has been studied since 

the 1980s by different researchers with the aim of beating the 

financial market. The improvement in machine learning 

framework and successful application of machine learning in 

various domains including financial domain, have inspired 

researchers to use different machine learning tools and 

techniques to predict financial markets. The machine learning 

frameworks are data-driven, non-parametric models, and they 

let “the data speak for themselves” [31]. Vapnik and his 

coworkers introduced the use of support vector machinesto 

overcome the difficulties of neural networks (NNs) such as 

getting trapped in local minima, overfitting to training data, 

and lengthy training time[35]. Unlike most of the traditional 

learning machines that adopt the Empirical Risk Minimization 

Principle, SVMs implement the Structural Risk Minimization 

Principle, which seeks to minimize an upper bound of the 

generalization error rather than minimize the training error. 

This will result in better generalization than conventional 

techniques [12]. Chen and Shih [6] proposed a model using 

SVM and NN for forecasting six major Asian stock market. 

Tay and Cao [32] and Cao and Tay [4] developed pricing 

models for five specific financial futures in the US market 

using SVMs, while Gestel et al. [11] used an LS-SVM for T-

bill rates and stock index pricing in the US and German 

markets. Several authors have proposed financial instrument 

pricing using kernel based SVM, with their simulated results 

showing that the SVM method outperforms the NN one [4, 6, 

11,24]. 

Although, the kernel based SVM techniques has been used for 

forecasting the financial instruments but the selection of 

kernel function and the free parameters of the learning 

mechanism were purely done empirically with no general 

guidelines and theoretical justification to it. Unsuitably chosen 

kernel function and the associated free parameters may lead to 

significantly poor performance[9, 18, 41].In addition, due to 

noisy, non-stationary, varying distribution, and unstructured 

nature of financial data use of a single kernel function may not 

be efficient to solve complex financial problems. Several 

researchers have used multiple kernel learning[2, 27]to deal 

with the above problems by fusion of kernels [10, 21, 

38,41].MKL framework mitigates the threat of flawed kernel 
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choice to certain degree by taking a set of kernels and deriving 

a weight for each kernel such that predictions are computed 

based on weighted sum of the kernels. As MKL framework 

uses combination of multiple heterogeneous basic kernels, the 

process to obtain optimal convex combination of kernels takes 

more time than the single kernel based SVM.  

The machine learning techniques i.e., single kernel SVM and 

multiple kernel learning only focuses on the forecasting 

accuracy, and rarely analyzed the computational time required 

to execute the model that is a very important factor in 

forecasting task, since good or bad time complexity indicates 

applicability of the model in practices [41]. Huang and his 

coworkers [13-14] proposed a promising supervised 

technique, called extreme learning machinehaving comparable 

accuracy and fast forecasting speed to solve some real-life 

problems and Li et al. [22] used this technique for stock 

market prediction. However, the comparative study of 

performances of SVM and ELM by Liu et al. [20] 

demonstrated that ELMs has potential to yield generalization 

behavior as good as the SVM when the size of training sample 

is large. So when large data is not available application of 

ELM may not be suitable, but SVM technique is suitable for 

small and large data set. 

The evaluation of algorithms in general is a central issue in 

the different fields like artificial intelligence, operations 

research, machine learning, and data mining and knowledge 

discovery [30].The performance evaluation of learning 

methods is an important topic in financial instruments’ 

prediction, sincea minor improvement in forecasting 

performance can have a positive impact on a financial 

investment. Previous studies show that, performances in 

financial prediction may differ using different performance 

measures and under different conditions [6,31]. Rokach [28] 

proposed that the algorithm selection can be considered as 

multi criteria decision making (MCDM) problem and MCDM 

techniques can be used to methodicallyselect the appropriate 

algorithm. To our best knowledge, up to date, use of MCDM 

technique to evaluate the performance of forecasting models is 

very limited.  

The main objective of the study is to evaluate and compare 

some promising machine learning methods using six criteria 

measures like root mean square error (RMSE), mean absolute 

percentage of error (MAPE), directional symmetric (DS), 

weighted directional symmetric (WDS), R squared (R2), and 

computational time complexity. For the performance 

evaluation a multi criteria decision making based Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS) 

method is used to rank the prediction models. The TOPSIS is 

one of the MCDM approaches known for reliable assessment 

of results, fast computation process, easily interpretable and 

ease of use and understanding [39-40]. Moreover, some 

studies [3, 19, 25, 29, 36, 42] have implemented TOPSIS to 

solve MCDM problem successfully.  

Ourempirical study is designed to assess five prediction 

models (SVM for regression with radial basis function: 

SVM+RBF, SVM for regression with polynomial kernel 

function: SVM+POLY, multiple kernels SVM learning: MKL, 

ELM with radial basis activation function: ELM+RADBAS, 

and ELM with sigmoidal activation function: 

ELM+SIGMOID)using six performance measures mentioned 

above for forecasting the values of commodity index on 

futures Dhaanya, traded in the National Commodity & 

Derivatives Exchange (NCDEX) Limited in India. The 

commodity futures index under consideration in our 

experiment highlights the importance of agriculture in India 

and provides a benchmark to the Indian agriculture futures 

sector. In the experiment, due to nonlinear nature of financial 

data, only non-linear kernels like radial basis and polynomial 

are used in the SVM for regression and MKL models. 

Similarly, nonlinear activation functions are used in the ELM 

regression models. In our experiment, we use rolling-over 

training-testing samples for datasets because the dynamics of 

financial market would change and we try to make our model 

adapt and robust to the changes. Our experimental results 

show that, this rolling-over technique obtain stable and better 

result.  

The rest of the paper is structured as follows. In Sections 2, 

we provide a summary of the SVM for regression model, 

MKL regression model, and ELM regression model. Section 3 

introduces the TOPSIS techniqueused in our study. In Section 

4, the research design for our study is presented with brief 

discussion on data used, data preprocessing, input features 

selection, performance criteria, and implementation of five 

machine learning models and the TOPSIS technique. Section 

5, provides computational results and analysis on the results of 

our study. Finally, Section 6 gives the conclusions of the study 

with a brief discussion of the findings and possible future 

work. 

II. FORECASTING MODELS 

A. SVM for regression 

Vapnik et al. [35] developed an SVM technique for regression 

[12], which we briefly describe below. 

Given a training dataset 1{( , ), . . . , ( , )}ly y
1 l

x x  (where each 
nX R x

i
, and X  denotes the input sample space), and 

matching target values y R
i
  for 1, . . . ,i l  (where l  

denotes the size of the training data), the objective of the 

regression problem is to find a function : nf R R  that can 

approximate the value of y  when x  is not in the training set. 

The estimation function, f , is defined as 

 

   

 (1)  

 

( ) ( ) ,Tf b x w Φ(x)
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where 
mRw , b R  is the bias, and Φ  denotes a nonlinear 

function from 
nR  to high-dimensional space 

mR  ( m n ). 

( )f x is determined by minimizing the risk 

 

(P)     , 

   

 

                                              (2) 

 

where L


 is the extension of the  -insensitive loss function 

originally proposed by Vapnik [35]. C is a user-specified 

constant known as the regularization parameter, which is used 

to modulate the trade-off between empirical and 

generalization errors.  

The problem (P) is solved using the primal-dual method to 

obtain  

*( ) ( )( ) ,

1

l
Tf b

i i
i

   


x Φ(x ) Φ(x)
i

 

*( ) ( ) .

1

l
K b

i i
i

   


x ,x
i

           (3) 

 

Here, :K X X R   is the Mercer kernel defined as 

( ) .TK x,z Φ(x) Φ(z)      (4) 

   *α α
i i i=1i=1

l l
and are the solutions to the primal quadratic 

optimization problem  

1* * * * *Maximize ( , ) ( ) ( ) ( ) ( ) ( ),
21 1 1 1

l l l l
Q y K

i i i i i i i i i j j
i i i j

                   
   

x ,x
i j

  

            (5) 

subject to 

*( ) ( ) 0,

1

l
i

i i
i

  


and   (6) 

*( ) 0 , 0ii C C
i i

     , where 1, . . . ,i l  .(7) 

The bias ( b ) is calculated using the Karush-Kuhn-Tucker (KKT) conditions [35], that is,  

* *( ) ( )  where 1  0 and 1  0 . (8)

1

l
b y K s s for C s for C

i j j i i
j

              


x ,x
j i

 

 

B. Multiple kernel learning regression 

The support vector machines for regression method presented 

in equation (1) uses a single function   and hence single 

kernel function K is used. If the dataset for the learning 

method has a locally varying distribution, using single kernel 

like in SVR may not be efficient to catch up the varying 

distribution. Instead of using one single kernel function, 

numerous kernel functions are combined. This learning 

mechanism using multiple kernels i.e., Multiple Kernel 

Learning (MKL) model provides a more flexible framework 

to extract information, patterns and forecast data more 

efficiently and effectively. This technique mitigates the risk of 

erroneous single kernel selection in support vector machines 

based learning to some degree by taking a set of kernels and 

deriving a weight for each kernel such that predictions are 

made based on a weighted sum of several kernels. In the 

multiple kernels learning mechanism an equivalent kernel is 

created by a linear convex combination of series of base 

kernels and is used in the learning mechanism for the given 

set of data. For example for M number of kernel functions 

( )x can be represented as: 

1 1 2 2( ) ( ), ( ),..., ( )M M

T
x x x x       

   

                                                     (9) 

where 1 2, ,..., M    are weights of kernel functions. With the 

introduction of multiple kernels, the objective function and 

constraints for multiple kernel regression problems become 

  ,

1 2
min min [ ( ')]

21
w b

l
C w

i i
i


  



subject            
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1
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s
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s M

 

 

 






    

    



 



  

                     (10) 

where ( )x is the vector of function mappings of equation (9). 

By introducing the Lagrangian multipliers, the Eq. (10) can be 

transformed to the following form: 

* *min max ( ) ( )
*, 1 1

1 * *( ) ( ) ( , )
2 1 1
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l l
y
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subject to  

1

*( ) 0,

1

*0 , 0 , 1,2,...,
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1

s
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l
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i
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where 
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is weighted sum of M kernel functions
1 2, ,..., MK K K , 

corresponding to 
1 2, ,..., M   , respectively.  

If we can find the values of  , and 
* by solving Eq.(11), 

the multiple kernel form of regression hyperplance 

corresponding to single kernel of equation (1) would be,:  

*( ) ( ) ( , ) ,

1

l
f x K x x b

i i i
i

   


 

    (13) 

 

 

 

 

 

The bias (b) is computed using Karush-Kuhn-Tucker (KKT) 

condition [35], similar to the solution of single kernel in 

equation (8). 

In order to solve the multi-objective optimization problem in 

equation (11), various techniques have been proposed by 

different researchers. Here we discussed a simple and efficient 

technique proposed by Rakotomamonjy et al. [27] called 

SimpleMKL for solving the MKL problem. The SimpleMKL 

is two-stage optimization algorithm, in the first stage; the 

problem in equation (11) is optimized using sequential 

minimal optimization (SMO) [26] keeping the weight vector 

 fixed. In the next stage, the Lagrange multipliers  and

* are kept fixed and the weight vector   is computed using 

reduced gradient method [23]. Further details on SimpleMKL 

algorithm can be found in Rakotomamonjy et al. [27] 

C. Extreme learning machine (ELM) 

The ELM algorithm was proposed by Huang et al. [13-14] to 

overcome the slow learning speed of feed-forward neural 

networks, which is due to their slow gradient-based learning 

algorithms and iterative determinations of all the network 

parameters.The ELM algorithm has been shown to have a 

shorter training time, with generalization performance results 

very close to those of the SVM.  

Given a supervised learning problem with N  arbitrary 

distinct training samples ( ),x , y
i i

 where 

1 2[ , ,..., ]T n

i i inx x x R x
i

and 
1 2[ , ,..., ]T m

i i imy y y R y
i

, ELM 

learning is realized in two stages. In the first stage, we 

randomly generate the weight and bias parameters between 

the input and single hidden layer neurons. Then, outputs at the 

neurons in the hidden layer are produced using appropriate 

activation functions, g(x). The remaining free tuning 

parameters (i.e., output weights between the hidden neurons 

and output nodes) are optimized in the training phase. This is 

the most distinctive feature of an ELM network, when 

compared with traditional feed-forward neural networks. 

In an ELM network, the relationship between output vector j
o  

and input vector j
x  is given by 

1

g( ) , 1,2,...,
hn

i

i

b j N


    i i j j
β w x o

               (14)
 

where 1 12[ , ,..., ]T

i inw w w
i

w  is the weight vector connecting 

the i-th hidden neuron and the input neurons, 

1 2[ , ,..., ]T

i i im  
i
β  is the output weight vector connecting 

the i-th hidden neuron and the output neurons, bi is the bias 

(threshold) of the i-th hidden neuron, and hn is the total 

number of neurons in the hidden layer. 

2
1 2min  to    ,                                                                   (15)
2 2 1

n mh
R

NC
subject

i
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In the second stage, the output weight vectors β
i

,  

1,2,..., hi n are obtained by solving  

where C  is the penalty coefficient of the training error, and 
mR

i
e  is the error vector with respect to the i-th training 

sample.

 1

1

1

( , ,. . ., , )

( . ) ... ( . )

: ... :

( . ) ... ( . )

h

h h

h h
h

n

n n

n n
N n

b b

g b g b

g b g b
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The solution of (2) is [15]  

1

,hnT T

C


 

  
 

I*
β H H H Y   

                 (18) 

where 
hnI  is an identity matrix with dimension hn , if the 

number of training samples is greater than or equal to the 

number of nodes in the hidden layer (i.e., N n
h

 ). Otherwise, 

it is 

1

,T T N

C


 

  
 

I*
β H HH Y    

                   (19) 

where NI  is an identity matrix with dimension N . 

III. TECHNIQUE FOR ORDER PREFERENCE BY 

SIMILARITY TO IDEAL SOLUTION (TOPSIS) 

METHOD 

TOPSIS, one of the multi criteria decision making method 

used in our study, was proposed by Hwang and Yoon [15], 

which is briefly describe below. TOPSIS selects one optimal 

solution for real-world problem from some alternative 

available solutions, where all alternate solutions can be used 

to solve the current problem. Our concern is to select an ideal 

solution that is superior to all other alternatives. In order to 

find the most appropriate solution, TOPSIS  technique 

assumes that, most preferred alternative solution have shortest 

distance from the positive ideal solution and largest distance 

from the negative ideal solution. In TOPSIS, the positive-ideal 

solution is a solution that maximizes the “benefit” criteria 

(criteria which improve the performance when the 

performance measure increases in value) and minimizes the 

cost criteria (criteria which improves the performance when 

the performance measure decreases in value), where negative 

ideal solution, does exactly the opposite. The operational 

procedure of TOPSIS can be summarized as follows: 

Suppose the current problem has J alternatives (i.e., 

forecasting models), and each of the alternatives has N 

number of criteria (i.e., performance measures).Let xijdenote 

the value for the ith criterion Ciof the jth alternative Aj. 

Step 1: Calculate the normalized decision matrix ( r
ij

) where: 

r , 1,..., 1,...,
ij

2

1

x
ij

j J and i N
J

x
ij

j

  




  

                        (20) 

Step 2: Calculate the weighted normalized decision matrix 

( v
ιj

) where: 

v = r , 1,..., 1,...,
ij ij

w j J and i N
i

     

     (21) 

where w
i

 is the weight of the ithcriterion or feature and 

1

1
N

i

i

w


 . 

Step 3: Determine the positive ideal ( S ) and negative ideal 

( S ) solutions. 

' ''+{ | 1,2,..., } ( max v | ), ( min v | ) ,v ij ij
11

S i N i I i I
i

j Jj J

        
    

    (22) 

' ''-{ | 1,2,..., } ( min v | ), ( max v | ) ,v ij ij
1 1

S i N i I i Ii
j J j J

        
     

    (23) 

where 'I is associated with the benefit criteria and ''I is 

associated with the cost criteria.  

For the evaluation of our regression models,  
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Step 4: Calculate the separation measures using the N-

dimensional Euclidean distance. The separation of each 

alternative from the positive ideal solution is calculated as: 

2+( ) , 1,..., .v vij i
1

N
j JD j

i

   


  

    (24) 

And the separation of each alternative from the negative-

ideal solution is calculated as: 

2-( ) , 1,..., .v vij i
1

N
j JD j

i

   


  

    (25) 

Step 5:Compute the R
j


that measures relative closeness to 

the ideal solution.  

, 1,...,
( )

j

j

j j

D
R j J

D D





 
 


   

    (26) 

Step 6: Rank the alternatives by the non-increasing order of 

R
j


 ratio value (i.e. highest R
j


value is ranked 1).  

IV. RESEARCH DESIGN AND IMPLEMENTATION 

In this section, we describe our procedure and experimental 

set-up for the study as shown in Fig. 1. A list of models 

consider for our study is shown in Table 1 along with their 

description.  

The experiment was carried out according to the following 

steps: 

Input: Time series data 

Output: Ranking of regression models 

START 

Step 1: Collect the raw time series data from the source (In 

our study source: NCDEX  website) 

Step 2:Feed the raw time series data to preprocess module to 

compute and prepare input feature (see Section4.2 for detail 

description and implementation setup) 

Step 3:Use the preprocessed data sets prepared in step 2 to 

train and test the five regression models. (see Section 4.4, 4.5, 

and 4.6 for detail description) 

Step 4:Calculate the six performance measures (criteria) 

described in Section 4.3 for each regression model. The 

results are summarized in Tables 6. 

Step 5: Generate the rankings of regression models using 

TOPSISas per the steps for computation given in Section 4.7. 

The results obtainedfrom Step 4 are used as inputs to the 

TOPSIStechnique. 

Step 6:The rankings of regression models using TOPSISare 

summarized in Tables 7. 

END 

 
Fig.1: Flowchart of the process for the proposed model 

Table 1 A list of models for our experiment 

Sl.No. Description of the model Abbreviation 
1 SVM regression with radial basis kernel 

function 

SVR+RBF 

2 SVM regression with polynomial kernel 
function 

SVR+POLY 

3 Multiple kernel learning regression with 

fusion of radial basis and polynomial 

kernels 

MKL 

4 Extreme learning machine regression 

with radial basis activation function 

ELM+RADBAS 

5 Extreme learning machine regression 
with sigmoidal activation function 

ELM+SIGMOID 
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A. Data description 

Our forecasting model uses real index on commodity futures 

(i.e., Dhaanya) data collected from the NCDEX Ltd. of India 

(http://www.ncdex.com). A total of 1,146 daily trading data 

points of the Dhaanyafuture commodity index were collected 

from NCDEX between November 1, 2011 and November 30, 

2015. Each index data point consists of the daily opening 

price, low price, high price, closing price, and trading date. 

The period during which the data were collected includes 

many important and significant economic events; thus, we 

consider these data to be suitable for training and testing our 

models. Table 2 describes the dataset in terms of high, low, 

mean, and median prices, as well as standard deviation, 

kurtosis (measure of the flatness of the distribution), and 

skewness (degree of asymmetry of the distribution close to its 

mean). The raw daily closing index prices are plotted in Fig. 

2. Table 2 and Fig. 2 shows that, the skewness value of the 

dataset is less than zero i.e., the dataset is left skewed 

distribution (most values are concentrated on the right of the 

mean, with the extreme values to the left), there are lot of 

spikes in the dataset, and the kurtosis value is more than three 

i.e., leptokurtic distribution (sharper than a normal 

distribution, thicker tails, and high probability for extreme 

values). This clearly shows that, our Dhaanya index time 

series data do not exhibit identical statistical properties at each 

point of time. 

Table 2 Description of dataset for NCDEX Dhaanya Index 

 

Parameter 

(for entire 

collection period) 

High Low Mean Median Standard 

deviation 

Kurtosis Skewness 

Price 3024.97 1285.45 2438.988 2469.35 342.0939 3.257389 -1.67454 

 

  

 

Fig.2: Closing index values of NCDEX Dhaanya Index (entire 

dataset) 

B. Data preprocessing and model inputs selection 

In order to improve the predictive power of the machine 

learning models used in our study, we transformed the original 

closing price of the index into a five-day Relative Difference 

in Percentage of price (RDP). This transformation makes the 

distribution of data more symmetric and to follows a normal 

distribution more closelyas illustrated in Fig. 3(b) and Fig. 

3(c)[32-34]. Further, financial technical indicators are 

computed to include as input features to our models. In our 

study, four-lagged RDP values (i.e., RDP-5, RDP-10, RDP-

15, and RDP-20), one transformed closing index price 

(EMA5) calculated by subtracting a five-day exponential 

moving average from closing price, and three financial 

technical indicators are considered as input features for the 

models. The input features are prepared based on the previous 

literature, feedback from the domain experts, and previous 

research work [7-8, 17, 32-34].The selections of input features 

are done very carefully so that, the trend in the closing prices 

are removed by use of RDP transformed inputs, original 

closing price information are retained by EMA5 input 

variable, volatility of the market is fed to the models by use of 

psychological line (PSY) indictor, stochastic (%K) indicator 

maintains thetrend of the index with respect to highest and 

lowest index values, and the Larry William’s (%R ) capture 

the overbought/oversold momentum of the index. The output 

variable (RDP+5) is computed by initially smoothing the 

closing price of the index with a three-day exponential 

moving averages. The description and formula of selected 

input features and output variables are presented in Table 3. 

Having treated the 1,146 collected raw time series data points; 

we obtained 1,123 data points transformed in terms of input 

features with dates starting from December 1, 2011 to 

November 30, 2015. To render the forecasting model more 

robust and reliable, we divide the proposed data into four 

datasets (D-I, D-II, D-III, and D-IV). Each dataset consists of 

data for commodity index for 30 months (2 years and 6 

months). Then, each dataset is subdivided into training and 

testing sets with 24 months and 6 months of data, respectively. 
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Table 4 summarized the details on the rolling-over training 

cum validation and testing sample for the D-I, D-II, D-III, and 

D-IV datasets. The Fig. 3(b) shows thatthere are outliers in the 

data set. Subsequently these outliers in data may make it 

difficult or time-consuming to converge to an effective 

solution for the machine learning models. In our study, the 

datavalues outside limits of ± 2 standard deviations are 

considered as outliers data andwinsorsing techniques were 

used to replace the values of outlier data. The input and output 

variables are normalized in the range -1.0 to 1.0 before being 

used in the training and testing phase.  

 
(a) Dhaanya closing price 

 
(b) RDP+5 values 

 
(c) RDP+5 values after removal of outliers data 

Fig.3: Histograms of (a) Dhaanya closing price, (b) RDP+5 

values, and (c) RDP+5 values after removal of outliers data 

Table 3Input and output variables used in this study 

Sl. No. Indicator Indicator Description & Formula 

Input variables 

1 RDP-5 
5( 5) 100

5

CP CP
i iRDP

i CP
i


  



 

2 RDP-10 
10( 10) 100

10

CP CP
i iRDP

i CP
i


  



 

3 RDP-15 
15( 15) 100

15

CP CP
i iRDP

i CP
i


  

  

4 RDP-20 
20( 20) 100

20

CP CP
i iRDP

i CP
i


  

  

5 EMA5 
5( 5) ( )EMA CP EMA

i i i
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6 Psychological line Psychological line is the volatility indicator based on the number of 

time intervals that the market was rising during the preceding period. 

(In this experiment, we used a period of 13 days.) 

100%
13

TDU
iPSY

i
  , 

where TDUi is the total number of days with regard to the rise in 

index price in the previous 13 days. 

7 Stochastic indicator %K 

 

Stochastic %K compares where a security's price closed relative to its 

price range over a given period. (In this experiment, we used a period 

of 9 days.) 

( )
% 100

( )

CPi LLP
K

i HHP LLP


 


, 

where LLP is the lowest low index price and HHP is the highest high 

index price over the last N periods. 

8 Larry William’s %R Larry William’s %R is a momentum indicator that measures 

overbought/oversold levels. (In this experiment, we used a period of 9 

days.) 

( )
% 100

( )

HP CP
iR

i HP LP


 


 

where LP is the lowest index price and HP is the highest index price 

over the last N periods. 

Output variables
 

1 RDP+5 
5( 5) 100

CP CP
i iRDP

i CP
i


  

 

3( )CP EMA
i i


 
Notation:  i: i-th day  [i days (i=1,2,…,N) counted from reference date, December 1, 2011, in the experiment] 

CPi: closing index value of i-th day;  ( )NEMA
i

: N-day exponential moving average of i-th day 

 

Table 4Rolling-over training-testing samples for datasets 
Datasets Training  Testing 

D-I 1st Dec, 2011 – 30th Nov, 2013 

(Sample Size: 597) 

1st Dec, 2013 – 31st May, 2014 

(Sample Size: 141) 

D-II 1st Jun, 2012 – 31st May, 2014 

(Sample Size: 588) 

1st Jun, 2014 – 30th Nov, 2014 

(Sample Size: 127) 

D-III 1st Dec, 2012 – 30th Nov, 2014 

(Sample Size: 566) 

1st Dec, 2014 – 31st May, 2015 

(Sample Size: 128) 

D-IV 1st Jun, 2013 – 31st May, 2015 1st Jun, 2015 – 30th Nov, 2015 
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(Sample Size: 547) (Sample Size: 130) 

 

C. Performance measures 

The performance of the alternate models was evaluated using 

the standard sixmetrics, shown in Table 5. The performance 

criteria are selected to include measuring the regression 

models in different aspect. For example, RMSE is selected to 

measure the error in terms of absolute value, MAPE and R2 

are used for relative error, DS provides an indication of the 

correctness of the predicted direction, WDS measures both the 

magnitude of the prediction error and the direction, and time 

complexity measures the time required for executing the 

model. In the ideal case in forecasting task, the RMSE, 

MAPE, WDS, and time complexity should have minimum 

values while other criteria like DS and R2, should have 

maximum value. In the study, all performance criteria were 

considered equally important while measuring the predictive 

performance of the forecast models. 

 

 

Table 5 Definitions of performance metrics and desired values  

 

Performance 

Metrics 

Definition Desired Values 

RMSE 

 

1 2( - )

1

N
p y
i iN i




 Minimum 

MAPE ( - )
1

*100%

1

p yN i i

N yi i




 
Minimum 

DS 100

1

1 if ( ) ( ) 0
1 1{

0 otherwise

N
d iN i

y y p p
i i i id i




  
   

Maximum 

WDS 
'

'

1 1

0 if ( ) ( ) 0
1 1{

1 otherwise

1 if ( ) ( ) 0
1 1{

0 otherwise

N N
y p y pd di ii i i i

i i

y y p p
i i i id i

y y p p
i i i i

d i

  
 

  
 

  
 

 

Minimum 

R2 

2( )

11
2( )

1

N
y p
i i

i
N

y y
i

i







 

Maximum 

Time  Computational Time Complexity

 
Minimum 
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where N is the total number of sample data, yiis the actual output value, and piis the 

predicted output value of the i-th sample, and y is the mean of actual output 

 

In the subsequent sections 4.4, 4.5, and 4.6, we present the 

details on computational techniques used and the experimental 

setups in SVM, MKL, and ELM regression models in our 

study. All the experiments were executed on an Intel Core i7 

CPU @ 2.10 GHz, with 6 GB primary memory. Moreover, for 

the purpose of getting a more general result, we repeat each 

experiment 30 times on every data set.  

 

D. SVM Implementation 

We implemented Vapnik’s SVM regression technique using 

LIBSVM, which is an SVM tool box [5]. SVMs for financial 

time series forecasting commonly use the polynomial kernel 

(k(x,y)=(x.y+1)d) or the Gaussian kernel (k(x,y)=exp((-

1/�2)||x–y||2)), d is the degree of the polynomial kernel and � 

is the width (bandwidth) of the Gaussian kernel. We used the 

Gaussian kernel (radial basis) function as the kernel function 

for the SVR+RBF model and the polynomial kernel were used 

for the SVR+POLY model. To train the standard SVM 

regression model, free parameters of the SVM regression 

model and that of the kernel function were determined using a 

grid search [16] with 5-fold cross validation. Different pairs of 

(C, �) were used in the experiments for SVR+RBF model, 

where C is the regularization parameter and� is the 

bandwidth of the radial basis kernel function. Similarly, a 

different pair of (C, d) used for SVR+POLY model, where d 

is the degree of the polynomial kernel function.  We keep the 

 (insensitive loss function radius) parameter constant at a 

reasonable value (i.e., 0.0001), because the number of support 

vectors decreases as   increases, when   is greater than 0.01 

[4]. The result with the minimum error was selected for 

comparison in our study. For the experiments, we prepared a 

search table that takes C values in the range 0.01 to 100, 

�values in the range 0.01 to 100, and d values in the rage of 1 

to 5. After obtaining the final values of free parameters in 

each case using the grid search technique, both the forecasting 

models (i.e., SVR+RBF and SVR+POLY), were trained with 

the entire training dataset for all the four datasets (i.e., D-I, D-

II, D-III, and D-IV) to create the final forecasting model. The 

out-of-sample (testing) performances of the models are 

tabulated in Table 6.   

 

E. MKL Implementation 

The radial basis function (RBF) and polynomial kernels have 

frequently been used in financial market forecast problem, e.g. 

[6, 17, 37]. In the experiment for the MKL, we have used the 

SimpleMKL [27] regression as discussed in section 2.2.  

For the multiple-kernel learning experiment, we have 

considered fusion of RBF and polynomial kernel functions. 

The C (regularization parameter) was fixed to 1 and the 

(insensitive loss function radius) parameter was fixed to 

0.0001. In case for RBF kernels, 37 different settings of kernel 

parameter�(bandwidth) were considered in the range from 

0.01 to 100. From 0.01 to 0.09 with a step size of 0.01, 0.1 to 

0.9 with step size of 0.1, 1 to 10 with step size of 1, and 10 to 

100 with step size 10 [38]. Similarly, for the polynomial 

kernels, 5 different setting of kernel parameter d(degree) were 

considered [d ϵ {1,2,…,5}].In total there are 42 (37 RBF 

kernels and 5 polynomial kernels) were used for the 

experiment. Training and testing for all the data sets (i.e., D-I, 

D-II, D-III, and D-IV) were experimented and the out-of-

sample (testing) performances of the model are tabulated in 

Table 6. 

F. ELM Implementation 

In the implementation of ELM regression, we implemented 

the regression model with two different activation functions 

(i) ELM with radial basis activation function: 

ELM+RADBAS, and (ii) ELM with sigmoidal activation 

function: ELM+SIGMOID). The programming codes used for 

may be downloaded from the following webpage: 

http://www.ntu.edu.sg/home/egbhuang/elm_codes.html. Basic 

ELM code has been used which requires only the number of 

hidden nodes to be tuned. We experimented using different 

numbers nodes in the hidden layer (in the ELM) and found 

that the optimal performance when the number of hidden 

nodes were more than the sample size. The optimal 

performance of this model for testing (out-of-sample) is 

tabulated in Table 6. 

 

G. TOPSIS Implementation 

In the implementation of TOPSIS method, we have five 

alternative forecasting models as described in Table 1 and 

each alternative models have six criteria (performance 

measures) as given in Table 5. The alternative forecasting 

models and their respective criteria are input to the TOPSIS 

method. The TOPSIS method runs as per the steps given in 

Section 3. The weights required to compute the weighted 

normalized decision matrix are always set by experts and is 

nontrivial. In this study in order to simplify the experiment, 

equal weights are set for each of six criteria by maintaining 

1

1
N

i

i

w


 (where w
i

 is the weight of the ith criterion). In table 

5, criterion (performance indicator) with desired value of 

maximum are set as “benefit criteria” and the criterion with 

minimum desired value are set as “cost criteria” for TOPSIS 

procedure. Finally, by using the TOPSIS method, the ranking 
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of the forecasting models according to their general 

performances is obtained and is summarized in Table 7. The 

rankings of the forecasting models are reached according to 

the value of measures of relative closeness to the ideal 

solution ( R
j


).  The higher value of R
j


means that, it is 

closer to the distance from the ideal solution and it is further 

from the negative ideal solution. 

V. EXPERIMENTAL RESULTS AND 

DISCUSSION 

The experimental results for the SVR+RBF model, the 

SVR+POLY model, the MKL model, the 

ELM+RADBASmodel, and the ELM+SIGMOID modelin 

terms of performance for the testing (out-of-sample) phase is 

presented in Table 6.It is observed that average result of MKL 

forecasting model showed better performance in terms of 

RMSE, MAPE, DS, and R2 performance measures compared 

to other four forecasting models. The SVM+RBF performed 

better for the WDS criterion and SVM+POLY performed 

better in terms of computational time complexity criterion.The 

results tabulated in Tables 6 indicate that no forecasting model 

attains the best performance across all performance measures 

(criteria) and therefore, one might draw different conclusions 

about the best performing forecasting model depending on the 

performance evaluation measured used. The numbers in bold 

denote the average best performance and numbers in 

underlined represent the average second best 

performance.Table 7, shows that SVR+RBF has highest R
j


value and hence ranked top. The MKL forecasting model is 

next in the ranking. The ELM+RADBAS and ELM+SIGMOD 

succeeded the MKL model respectively. In this study, 

SVR+POLY value is lowest in the ranking. 

Table 6Performance of out-of-sample (testing) results of 

SVR+RBF,SVR+POLY, MKL, ELM+RADBAS, and 

ELM+SIGMOID model.  

Forecasting Models Datasets RMSE MAPE DS WDS R2 Time 

SVR+RBF 

D-I 0.0236 0.3462 93.5719 0.037 0.9857 0.111 

D-II 0.0255 0.2362 96.8254 0.0448 0.9831 0.1 

D-III 0.0293 0.2432 98.4252 0.0218 0.9878 0.097 

D-IV 0.0388 0.4963 93.7984 0.0327 0.9835 0.093 

Average 0.0293 0.3305 95.6552 0.0341 0.9850 0.1003 

SVR+POLY 

D-I 0.0843 0.6973 83.5714 0.1833 0.8182 0.072 

D-II 0.0987 0.9395 86.5079 0.1192 0.7474 0.063 

D-III 0.1165 0.7284 87.4015 0.1648 0.8088 0.059 

D-IV 0.12 2.6036 87.5969 0.0856 0.8428 0.056 

Average 0.1049 1.2422 86.2694 0.1382 0.8043 0.0625 

MKL 

D-I 0.0204 0.2924 95.7142 0.0226 0.9893 1.9036 

D-II 0.0221 0.171 96.8254 0.0444 0.9873 1.808 

D-III 0.0268 0.1922 97.6378 0.029 0.9898 1.7007 

D-IV 0.0323 0.4321 95.3488 0.0406 0.9886 1.5552 

Average 0.0254 0.2719 96.3816 0.0342 0.9888 1.7419 

ELM+RADBAS 

D-I 0.0349 0.5029 89.2857 0.1394 0.9689 0.234 

D-II 0.0427 0.3075 92.8571 0.0689 0.9527 0.1872 

D-III 0.1093 0.6498 89.7637 0.1364 0.8318 0.1872 

D-IV 0.0874 0.7966 96.124 0.0446 0.9165 0.2496 

Average 0.0686 0.5642 92.0076 0.0973 0.9175 0.2145 

ELM+SIGMOD 

D-I 0.0325 0.4003 90 0.0936 0.9728 0.1872 

D-II 0.0346 0.3531 91.2698 0.1196 0.9689 0.1872 

D-III 0.105 0.6035 84.2519 0.4317 0.8447 0.2028 

D-IV 0.0704 1.0463 96.8992 0.0411 0.9459 0.0144 

Average 0.0606 0.6008 90.6052 0.1715 0.9331 0.1479 
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Table 7 TOPSIS rankings for forecasting models of our study. 

Forecasting Models 
TOPSIS ( R

j


) 
Ranks 

SVR+RBF 0.9531 1 

MKL 0.6307 2 

ELM+RADBAS 0.5929 3 

ELM+SIGMOD 0.4617 4 

SVR+POLY 0.3499 5 

VI. CONCLUSIONS AND FUTURE WORK 

Although different machine learning models have been used 

for forecasting the financial instruments by different 

researcher in literature, we propose a broad framework for 

ranking multiple regression models with multiple performance 

criteria using multi criteria decision making model.The data 

used in our experiments were real data and hence, the results 

can be considered more practical.  

In this study, we attempted to propose a two-stage framework 

to rank multiple forecasting models using TOPSIS as MCDM 

technique. In the first stage, performance score is computed 

for each forecasting (regression) model to evaluate whether 

superior or inferior performance of one forecasting model 

over another. The second stage applies MCDM based TOPSIS 

method to rank the forecasting models. The proposed 

framework has been analyzed empirically using real financial 

time series data on commodity futures index. Although the 

results shows that, MKL forecasting model performed better 

than other models in terms of RMSE, MAPE, DS, and R 

Square performance measures and SVM+RBF performed 

better than other models in terms of WDS and time 

complexity but the SVR+RBF regression model ranked top in 

the ranking list of forecasting models when all the measures 

are taken into consideration. The ranking on MKL degraded 

because of its higher time complexity. For the decision 

making where the time is not a major concern, the MKL 

should be the most preferred method. 

As a future research direction, there is a possibility to rank the 

forecasting models using other different MCDM techniques a 

like Analytic Hierarchy Process (AHP), Preference Ranking 

Organization METHod for Enrichment of Evaluations 

(PROMETHEE), VIKOR, and Data Envelopment Analysis 

(DEA) which will help to further evaluate the strength of the 

proposed framework.A limitation of the study is the limited 

dataset. Despite the available data size being comparatively 

small, reasonably good results were attained for forecasting 

the commodity futures index. The proposed hybrid model 

should provide better forecasting results given larger volumes 

of data. In this research, we developed the hybrid model by 

combining machine learning regression models and MCDM 

technique for solving the function approximation problem and 

rank the models based on multiple criteria. We feel that the 

methodology proposed in this paper is quite promising and 

successful application to non-linear and highly complex 

financial time-series data suggests useful application of the 

proposed model in other domains. 
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