
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1337 | P a g e

Survey on Handwritten Name Recognition Features
Using ANNs

Dr. Seema S, Shruti M Chavan

Dept of CSE, Ramaiah Institute of Technology, Bangalore

ABSTRACT: The Handwritten Name Recognition proposed in this paper gives the application of names recognition using
ANNs (Artificial Neural Networks). The classifiers that are selected for the classification tasks area pipeline of a RBM (Restricted
Boltzmann Machine) to extract the features and MLP (Multi-Layer Perceptron) to classify, MLP using HOG (Histogram of
Oriented Gradients) features, MLP using PCA (Principal Component Analysis) and only MLP. We have implemented the
classification process using the scikit-learn library. We have learned the classifiers using the training data and computing
various metrics in the test data. By the testing results, we got the best results produced by the MLP and MLP with PCA features.

Keywords: Restricted Boltzmann Machine, Multi-Layer Perceptron, Histogram of Oriented Gradients, Principal Component
Analysis

I. INTRODUCTION

The recognition of handwritten names from the scanned
images has been a problem that received much attention in
the fields of pattern recognition, image processing, and the
artificial intelligence. The classifiers that are used for
classification in this proposed paper are: RBM (Restricted
Boltzmann Machine) are excellent feature extractors,
working just like auto encoders. They easily outperform
PCA (principal component analysis) and LDA (Linear
Discriminant Analysis) for dimensionality reduction
techniques. The features that are extracted from images are
fed to neural networks or machine learning algorithms such
as SVM (Support Vector Machine) or Logistic regression
classifiers. RBMs only work on inputs between 0 and 1 and
even works very well on binary inputs. MLP (Multi-layer
perceptron’s) are a popular form of feedforward artificial
neural networks with many successful applications in data
classification. The MLP used for character recognition
provides excellent level of accuracy and it will take
minimum time for training the network.

1) Problem Description

The goal of the project is to solve the task of name
recognition from the handwritten images implementing a
NN (Neural Network) approach and using a database with a
large number of images of handwritten names, the dataset
includes over 125,000 images of handwritten names along
with human contributor’s transcription of these written
names.

2) The dataset has the following
characteristics:

 1 unique identifier per entry on the
dataset.

 1 URL to the corresponding image per
entry.

 1 transcription of the name per entry.

 1 label indicating if it's a first name or the
last name per entry

 The images don’t contain the names only
and it may contain more data that needs to be cut or
deleted, the transcriptions of the names sometimes
are missing, are not correct or are repeated in
multiple lines.

Since we have the dataset transcription of the names this
is a supervised learning problem.

II. DESCRIPTION OF OUR
APPROACH

We organized the implementation of the project
according to the following tasks:

1. Pre-processing of the dataset

2. Pre-processing of the images

3. Feature extraction

4. Classifiers

5. Inference

6. Validation

A. Pre-processing of the dataset

The original dataset has many format problems, so the
first step was to solve this. We have two types of images,
some in which the name is written next to the first name or
last name word and others which the name is written under
that words. In the second type of images the transcribed
name is duplicated in many lines, there are also labels that
are duplicated only in the line below that belongs to the first
type of images.

We solved this with a small program that deletes the
duplicated names and modifies the last label to indicate if
the name is positioned below the first name or last name

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1338 | P a g e

word or next to it. In case the name is located on the right
the last label will have the value ”first” or ”last” and in case
that the name is located below it will have the value ”first b”
or ”last b”.

B. Pre-processing of the images

We used the panda’s library to import the dataset from
the CSV file. In the images apart from the name that we
want to recognise we have a lot of noise that we want to
erase, for example, the word first name or last name or some
split characters are part of other names. First name or last
name words appear in all the images and because they are
written in a machine and then printed they have always the
same exact form, so we extracted as reference the last two
characters of these words from one image of the database.
We used a template matching algorithm from the OpenCV
library [2] (Histograms and Matching) [3] using this
reference image that locates the first name or last name
word. After this is done, we use the information about the
location of the word to crop the image and extract the name.
However, with this procedure apart from the name we can
also crop some noise like parts of other names written above
or below. Because the images are taken with the name
centered, it would never touch the corners so to remove the
noise we find any figure that is touching the lower border of
the image and we delete it.

After this what we have is an image that contains only
the name that we want to recognize. The next step of the
procedure is the character extraction. This is done with a
clustering algorithm. First, we get the binaries of the image,
then using clustering we calculate the different connected
component of the binarized image [4] [5]. When this is done
we calculate the coordinates of every component to extract
the characters. The extracted characters are then rescaled to
a 28x28 image; these are the images that we will use to train
our Neural Networks. Due to the noise, split characters or
by the bad label of the name present in the dataset we may
get extra characters which are not present in the recognised
name in the label.

Nevertheless we are able to obtain the same number of
characters that the name label has with approximately 94%
of success rate. The remaining 6% of the names are not
added to the trained or test data, because those data might be
wrong and we also know that if we try to test the result with
it, it would be labelled as failure. These inconsistent names
are added to another list so that after having trained the
neural networks we can try to extract some valuable
information from them. We have no way of checking if the
character extraction has been done properly in the data that
we will use for training and testing, but based on the results
of the project we think that we have enough amount of
properly extracted characters to successfully train our
Neural Networks. The data is split into two different sets:
training and testing, for validation. We use the same training
set to learn all the classifiers, and the same test set for
evaluating their accuracy.

C. Feature extraction

We have implemented different types of feature
extraction to test which of them gives the best results [6].

1) Restricted Boltzmann Machine

The Restricted Boltzmann Machines contains a set of
latent variables that represent higher order patterns present
in the data. They are commonly used in the character
recognition task. This is an example of the features learnt by
the RBM:

2) Histogram of Oriented Gradients

This technique uses the distribution of directions of
gradients as features [7]. Gradients of an image are useful
because the magnitude of gradient is large around edges and
corners which give us a lot of information about objects
shape. The problem with this method is that the characters
image are of size 28x28. The (Figure 1) shows an example
of feature extraction using HOG which is one of the
characters in the dataset.

Figure 1: Original character and the result of HOG

3) Principal Component Analysis

PCA is a linear transformation algorithm that seeks to
project the original features of our data onto a smaller set of
features while retraining most of the information. This
algorithm tries to find the most appropriate direction or
angles that maximize the variance in the new subspace [8]
[9]. The number of PCA features used in this paper is 100.
First 2 features of the PCA are shown in the below (Figure
2).

Figure 2: PCA of the first two features

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1339 | P a g e

4) No feature extraction

For the purpose of evaluating the previous methods we
also trained our neural networks without any type of feature
extraction using the binarized image of the characters
(Figure 3) shown below.

Figure 3: A binarized character without feature
extraction

The(Figure 4) represents the process that we follow to
train our network.

Figure 4: Process diagram

D. Classifiers

We use four different classifiers with the following
parameters:

1. Pipeline of RBM for feature extraction and MLP for
classification:

 RBM:
 n components = 300
 learning rate = 0.01
 n iterations = 45

 MLP:
 layers = (300, 400, 150)
 activation function = ’relu’(Rectified

Linear Unit)
 max iterations = 5000
 tol(Total Outside Liability) = 0.0001

2. MLP classifier with HOG (Histogram of Oriented
Gradients) features:

 layers = (300, 400, 150)
 activation function = ’relu’(Rectified

Linear Unit)
 max iterations = 5000
 tol(Total Outside Liability) = 0.0001

3. MLP classifier with PCA (Principal Component
Analysis) features:

 PCA:
 n components = 100

 MLP:
 layers = (300, 400, 150)
 activation function = ’relu’(Rectified

Linear Unit)
 max iterations = 5000
 tol (Total Outside Liability)= 0.0001

4. MLP classifier with character images directly:

 layers = (300, 400, 150)
 activation function = ’relu’(Rectified

Linear Unit)
 max iterations = 5000
 tol(Total Outside Liability) = 0.0001

The learning algorithm for the RBM is Stochastic
Maximum Likelihood and learning algorithm for all the
MLPs is default in Scikit-Learn: Adam optimizer.

1) Rationale behind the conception of NN

The multilayer perceptron is the most popular network
for this task and that it commonly produces good results,
which is why we chose this type of Neural Networks. There
are other more advanced methods used for handwritten text
recognition such as convolutional neural networks, but the
objective of this work was to solve the problem using an NN
approach excluding Deep Learning.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1340 | P a g e

E. Inference

Once the Neural Networks are trained the process to
predict new names is very similar to the process to train it.
The new image must follow the same process that the
images used for training i.e., we need to extract each
individual character on the image. Then, apply the feature
extraction that we want to use, for example calculate the
Histogram of Oriented Gradients or calculate the state of the
RBM for this image. Then the multilayer perceptron
predicts a letter for each individual character. The final step
is to put the values predicted by the Neural Network
together to form the name.

F. Validation

To validate our results we compute the scikit classifier
metrics and our own full name prediction metrics in the test
data. Another possibility was to compute the cross-
validation in the complete dataset but we used the split
between train and test because it was simpler. We divided
the dataset in 80% as training and 20% as testing batches.

We computed the classification report of Scikit metrics
(which gives the precision, recall and f1-score for each
classifier) for individual character prediction. We also tested
full name recognition and we output the full correct name
ratio and the correlation ratio for each classifier show in the
(Figure 5, 6, 7, 8) below.

Figure 5: MLP classification using RBM features

Figure 6: HOG+MLP classification

Figure 7: PCA+MLP classification

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1341 | P a g e

Figure 8: MLP only classification

III. IMPLEMENTATION

All the project steps were implemented in Python. We
used pandas and urllib for reading the

Original database and getting the images from the
servers, scikit-image, cv2 (python3-opencv) and scipy for
pre-processing the dataset, matplotlib and plotly for plotting
different data and scikit-learn for the classification tasks.
We illustrate how the implementation works in the Python
notebook.

1) Usage

Downloading all the database and training the Neural
Networks takes a long time, so in the GitHub repository of
the project [2] we added a database with 10,000 downloaded
images and pre-trained the classifiers with that database. At
the beginning of the notebook there are some global
variables that allow the user to choose how to run the
program.

1. Dataset load method: If the value is ’load’
it will load the database provided. If the value is
’download’ it will download the images.

2. Save database: If the value is true it will
save to a file the generated dataset with the
downloaded images.

3. Load classifiers: If the value is true it will
load the pre-trained classifiers provided. If the
value is false it will train the classifiers.

4. Save classifiers: If the value is true it will
save to a file the classifiers once they have been
trained.

5. Save results: If the value is true it will
save the results of the classification test to a file.
It’s useful because when dealing with a lot of data
the RAM fills up and could cause the screen to
freeze.

6. Enable error output: If the value is true it
will print some information useful for debugging
and for improving the program such as the images
where the character extraction has failed.

IV. RESULTS

We ran our testing for the first 30000 names in the
dataset because testing with more data was not possible with
our machines (we don’t have enough RAM), the included
prebuilt dataset and classifiers from our repository were
from this testing.

The precision produced by the RBM-MLP Pipeline,
MLP with HOG features, MLP with PCA features and MLP
classifiers in individual character recognition were,
respectively: 0:92, 0:89, 0:92 and 0:93.

Figure 9:Individual character classification results
The full name correct ratio produced by the RBM-MLP
Pipeline, MLP with HOG features, MLP with PCA features

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1342 | P a g e

and MLP classifiers were, respectively: 0:664, 0:579, 0:688
and 0:709.

The full name correlation ratios (similarity of name
produced to original name) produced by the RBM-MLP
Pipeline, MLP with HOG features, MLP with PCA features
and MLP classifiers were, respectively: 0:923, 0:899, 0:929
and 0:934.

Therefore, the best classifiers were the MLP with PCA
features and the MLP.

The results of the computation of the Scikit metrics for
the RBM-MLP Pipeline, MLP with HOG features, and MLP
with PCA features and MLP classifiers are respectively
shown in (Figure 9, 10)

Figure 10: Recognized of name with all 4 features

We can also see the full name correct ratios and
correlation ratios in the (Figure 11) below.

Figure 11:Full name test results

As we can see, the percentage of correctly classified
names is not too high, but if we calculate

The correlation of the predicted names with the real
names the number is really high, that means that what the
classifier predicts is very similar to the real name, so the
names that are not correctly classified are probably wrong in
very few characters.

V. CONCLUSION

In our project we applied a multilayer perceptron
combined with different types of feature extraction to the
“Transcriptions of names from handwriting” dataset. We
have computed the accuracy of this Neural Networks and
we observed that the simplest implementation, the MLP
without feature extraction produces the highest accuracy.

Finally as future upgrades in this implementation we did
not do anything with names where the character extraction
gives us inconsistent results. Even so the program stores in a
list all these names to make possible to work with them in
the future. Due to computational limitations we were not
able to train with the full database, training with more
names could help to improve the results. Also fine tuning of
the parameters of the neural networks could improve the
results but computational power is again a limitation.

REFERENCES

[1] Crowd Flower. Data for everyone library: Transcriptions
of names from handwriting.

[2] Gary Bradski and Adrian Kaehler. Learning OpenCV:
Computer vision with the OpenCVLibrary.

[3] OpenCV documentation: Template matching.

[4] Scipy Lectures. Labelling connected components using
scikit-image.

[5] Scikit-Image. Scikit-image documentation:
skimage.measure.label.

[6] Dewi Nasien Muhammad ‘Arif Mohamad, Haswadi
Hassan and Habibollah Haron. A review on feature
extraction and feature selection for handwritten
character recognition. International Journal of
Advanced Computer Science and Applications.

[7] Satya Mallick. Learn opencv: Histogram of oriented
gradients.

[8] Pierre Baldi and Kurt Hornik. Neural networks and
principal component analysis.

[9] Anisotropic. Interactive intro to dimensionality
reduction.

